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We extend an agent-based model of crime-pattern formation initiated in Short et al. by incor-

porating the e®ects of law enforcement agents. We investigate the e®ect that these agents have

on the spatial distribution and overall level of criminal activity in a simulated urban setting. Our

focus is on a two-dimensional lattice model of residential burglaries, where each site (target) is
characterized by a dynamic attractiveness to burglary and where criminal and law enforcement

agents are represented by random walkers. The dynamics of the criminal agents and the target-

attractiveness ¯eld are, with certain modi¯cations, as described in Short et al. Here the dynamics
of enforcement agents are a®ected by the attractiveness ¯eld via a biasing of the walk, the

detailed rules of which de¯ne a deployment strategy. We observe that law enforcement agents, if

properly deployed, will in fact reduce the total amount of crime, but their relative e®ectiveness

depends on the number of agents deployed, the deployment strategy used, and spatial distri-
bution of criminal activity.

For certain policing strategies, continuum PDE models can be derived from the discrete

systems. The continuum models are qualitatively similar to the discrete systems at large system

sizes.
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1. Introduction

In a previous work1 a model of criminal behavior was introduced, the purpose of

which was to describe, at the statistical level, evolving patterns of criminal activity.

The essential components of the model are: (a) itinerant criminal agents, and (b)

target attractiveness. An important feature of the model is that the attractiveness is

dynamically updated in response to the history of activity at the target. This in turn

has led ��� at least within the context of the model ��� to the successful prediction of

crime hotspots. The purpose of the current work is to introduce and study the e®ects

of a third (essential) component in the model, namely the presence of law enforce-

ment agents.

We remark that, in the context of this and the earlier work, no serious e®ort is

made to calibrate the model to correspond with actual criminal activities on realistic

time scales. This is possible, and is the subject of ongoing research. The goal of these

studies is to gain a mechanistic understanding of the observed phenomena. It is our

belief that the observed large-scale, long-time events are a consequence of cooperative

behavior among many interacting constituents. Hence, in accord with the under-

standing of other cooperative phenomena (e.g. phase transitions in condensed matter

physics), once the essential features have been encapsulated, the correct phenom-

enology will be exhibited independent of the ¯ner details. It is our hope that with the

general understanding gained concerning the nature of crime hotspots and a general

ansatz concerning the nature of police/criminal interactions, it will be possible to

suggest strategies for the allocation of police resources to e±ciently combat real-

world crime.

1.1. Background

It is known that crime is not distributed evenly spatially or temporally. Indeed, even

at the local level, a burglary at a particular location evidently enhances the prospects

of future criminal activity at the same and at nearby locations.2�6,1 One explanation

for this e®ect is found in the \broken windows" theory7 which posits that the disorder

that results from criminal activity ��� gra±ti, broken doors and windows ���
increases the future rate of such activities.8 In particular, it is not unreasonable to

assume that after a successful burglary the criminal or an associate is more likely to

revisit the \easy" target.6,9 Moreover, there are mid- and long-range correlations:

Some neighborhoods are simply \worse" (i.e. enhance and attract criminal activities

more) than others.10�14 However, quite apart from these intrinsic \background"

considerations, it appears that the local mechanism has the potential to create

hotspots ��� areas where the burglary rate is substantially higher than that of its

surroundings.

With these considerations in mind, let us proceed with an informal description of

the model in Short et al.1; a more precise description will be provided in the next

section. The broken windows e®ect is re°ected in a dynamical property of the

targets: associated with each target (house) there is a number which represents the
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\attractiveness" of the location for burglary by criminal agents. This attractiveness

plays two roles: (i) it biases movement of the agents toward targets of higher

attractiveness, and (ii) determines the rate at which (or probability that) a target is

burglarized given that a criminal agent is at the target location. Moreover, the value

itself represents the sum of two terms. One component is static and is derived from

the intrinsic properties of the house and its neighborhood.15�20 The other component

is dynamic and is related to local burglary events. How the dynamical component

evolves in time will be described shortly.

E®ectively, a criminal agent at a particular location has a choice: the agent can

either commit a burglary, the probability of which increases with the attractiveness

value, or the agent \chooses" to move to a neighboring house. If burglary has been

chosen, then the agent is removed from the model. This represents the criminal

returning home with the illicit acquisitions. On the other hand, if the criminal agent

chooses to move, a neighboring location is selected with a bias favoring neighbors

with greater attractiveness.

Next, let us brie°y discuss how criminals enter and leave the system. As men-

tioned above, after a criminal agent has committed a burglary, the agent is removed

from the system. Criminals can also be randomly removed from the system. Indeed

since most (low pro¯le) house burglaries are committed by criminal agents who live

relatively close to their target,21,19,22,10,23 it seems reasonable to incorporate a

mechanism that limits how far criminals wander from their starting point. To this

end, a rate of removal from the system is introduced which may, in the above ver-

nacular, be regarded as a third choice: with some relatively low probability, the agent

is simply removed from the environment without having committed a burglary. This

probability represents how long, on average, a criminal agent is willing to wander

before giving up and returning home. Finally, to model the agents starting from their

homes and commencing their searches for a suitable target, criminals are introduced

at each site with a given rate.

It is evident that the behavior of criminal agents is strongly tied to the attrac-

tiveness values in their local environments. The key feature of the model is a feedback

mechanism whereby the converse is also true: local attractiveness values are

increased by criminal activities. Speci¯cally, in the event that a house is burglarized,

the dynamic attractiveness of the targeted house is increased by a ¯xed amount.5,6,a

This does not represent a permanent change, nor is this the only mechanism for

increase of attractiveness. First, the dynamic attractiveness of each house decays in

time; thus, if not subjected to further criminal activity, the total attractiveness value

aIt is important to note that, in the context of the model, not all criminal actions need be interpreted as

actual burglary events. Thus the so-called \burglary events" ��� standing notation to which we will

adhere ��� can represent any criminal activity that increases the perceived attractiveness of the target.

Crimes, such as attempted burglaries and vandalism, that are committed on a property may indeed raise
that house's attractiveness to criminal elements. Further, other low level criminal activities done in the

neighboring environment, such as a hole cut in a fence to facilitate a getaway, will also increase the rate of

future burglaries.8
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of a target returns to its baseline value. Second, the dynamic attractiveness is

spatially di®usive: local values are adjusted in accordance with the average among

neighboring houses.

In the present work, police agents will be introduced into the above model; a

schematic overview of the entire setup is provided in Fig. 1. Police agents will be

permitted to explore the urban environment according to various strategies (for

general background see Refs. 24�26). The central purpose of this work is to inves-

tigate di®erent strategies in order to ascertain their relative e®ectiveness at reducing

criminal activity. To accomplish this, we must ¯rst decide how to model the inter-

action of police agents with the criminal agents and/or the urban environment. The

vast majority of burglaries go unsolved27 and, in any case, on-the-spot arrests of

burglars are rare. Thus no attempt will be made to model apprehension of criminals

by law enforcement agents. Instead, we will aim to incorporating the deterrent e®ect

of police into the system.

Deterrent e®ects will be modeled in two ways, the ¯rst of which impacts criminals

directly and the second via a short-term e®ect of police agents on the urban

environment. In general, on the basis of obvious considerations, criminals will avoid

committing crimes in the presence of law enforcement (see discussion in Cohen and

Felson28). Thus one reasonable mode of interaction is that on encounter with a police

agent, a criminal agent might ��� prematurely ��� decide to return home. The second

mode alters the environment: proximity of police will tend to make the local

environment less attractive to the criminal elements. Hence by reducing the attrac-

tiveness value in accord with the presence of police agents, there will be a diminished

rate of criminal activity and a tendency for criminals to move away from regions with

a high concentration of police agents. It is remarked that both modes are enforcing

Fig. 1. Flowchart summarizing the discrete simulation.
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the same tendencies. Due to limitations of our own resources, we have chosen to focus

our attentions on the second option.

1.2. Formulation of the model

We shall now give a more precise description of the model without police agents. The

model can be de¯ned on any graph G (the geometry of which can closely re°ect that

of an actual city). However for simplicity, we shall place the target houses at points

on the 2D square lattice Z2. We denote a generic position (site) by s ¼ ði; jÞ with,
e.g. 0 � i � M , 0 � j � N . At each site s, the number AsðtÞ represents the attrac-

tiveness of the target at s at the integer time t. As noted in the previous section,

attractiveness is the sum of two components, AsðtÞ ¼ A0
s þ BsðtÞ, where A0

s is the

time-independent component and, BsðtÞ, evolves dynamically.

The evolution in time of BsðtÞ is driven by burglary events near s. The probability

that a criminal agent at site s will choose to commit a burglary is

psðtÞ ¼
�AsðtÞ

1þ �AsðtÞ
; ð1:1Þ

where � > 0 determines the e®ectiveness of As in this context.b The increase in the

dynamic attractiveness at site s that results from EsðtÞ, the number of burglary

events at time t, is:

Bsðtþ 1Þ ¼ BsðtÞ þ �EsðtÞ;
where � is the increase in attractiveness from a single burglary.

Now the decay of attractiveness over a time-stepc is

Bsðtþ 1Þ ¼ ð1� !ÞBsðtÞ;
where !, the rate of decay, is a constant between 0 and 1. Finally, the di®usion of

attractiveness is modeled by

Bsðtþ 1Þ ¼ ð1� �ÞBsðtÞ þ
�

4

X
s 0�s

Bs 0 ðtÞ; ð1:2Þ

where �, the rate of di®usion, is a constant between 0 and 1 and s 0 � s denotes s 0 is a
neighbor of s ��� that is jjs 0 � sjj ¼ 1. Equation (1.2) can be rewritten as

Bsðtþ 1Þ ¼ BsðtÞ þ
�

4
�BsðtÞ;

bEquation (1.1) di®ers somewhat from its counterpart in Short et al.1 since, in that context, the model was

driven by rates rather than probabilities. Although there is a technical distinction between the two
approaches, we do not regard such di®erences as important. Indeed in the na€�ve continuum limit, the

denominator washes out and thus coincides with the version of Eq. (1.1) according to rates.
cFor present purposes, a single time-step is the time scale in which each agent or target is typically updated

once. In the vernacular of spin-systems, there is one Monte Carlo step per spin.
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where � is the discrete Laplacian

�BsðtÞ ¼
X
s 0�s

Bs 0 ðtÞ � 4BsðtÞ:

Thus, if nsðtÞ denotes the number of criminal agents at the site s at time t, we may

combine all of the above to obtain:

Bsðtþ 1Þ ¼ BsðtÞ þ
�

4
�BsðtÞ

h i
ð1� !Þ þ �psðtÞnsðtÞ: ð1:3Þ

Remark 1.1. We remark that Eq. (1.3) is in actuality a formal identity since,

strictly speaking, the right-hand side is the average value of Bs at time tþ 1 given the

(random) values of the various other quantities at time t. It is not possible to fully

justify Eq. (1.3) by taking the average of the right-hand side since the random variables

ns and ps are not necessarily independent.While, from a mathematical perspective, we

consider these points to be important, we do not anticipate a signi¯cant impact on the

large-scale, long-time behavior of the system to result from the neglect of these

considerations. This anticipation has been borne out by the close similarities between

the discrete agent-based models (which, necessarily, includes correlations) and the

na€�ve continuum limiting PDE in which these e®ects have been neglected.

Approximations of this sort are not without precedent: in particular, the philosophy,

as discussed in Spohn,29 is that the important (large-scale) correlations are re°ected in

the intrinsic nonlinearities of the continuum limit. In all examples of similar models

that have been mathematically analyzed (not to mention a plethora of systems that

have received attention in the physics community), the appropriate continuum limit

turns out to be essentially that which is obtained by the neglect of local correlations.

However, it is not necessarily the case that the continuum parameters are exactly the

parameters obtained by the so-called na€�ve scaling. Notwithstanding, in the context of

the present work we shall adhere to this ideology and will consider the continuum

systems obtained by na€�ve scaling with neglect of correlations.

In the event that a criminal agent does not commit a burglary, the agent will be

removed or moved to a neighboring site. In the latter case, the site will be chosen

randomly, but biased in the direction of high attractiveness. Here the probability a

criminal agent will move from site s to a neighbor r is given by

ArðtÞP
s 0�s

As 0 ðtÞ
:

Given the number of criminals, nsðtÞ at site s, let us now calculate the number

that will be at the site at time tþ 1. The model, in fact, demands that all of the

criminals at site s at time t will be gone by time tþ 1 (criminal agents are allowed one

of the following three options: move to another site, commit a burglary ��� in which

case they are removed ��� or be removed without committing a burglary). Thus the

expected number of criminals at site s at time tþ 1 is given by the in°ux from
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neighboring sites plus a term accounting for their spontaneous creation:

�sðtþ 1Þ ¼ ð1� �ÞAsðtÞ
X
s 0�s

ð1� ps 0 ðtÞÞ�s 0 ðtÞ
Ts 0 ðtÞ

þ �: ð1:4Þ

In the above, � is the probability that a criminal will be removed without committing

a burglary, � is the probability that a criminal will be added to the site (representing

a new criminal \starting from home") and TsðtÞ ¼
P

s 0�s As 0 ðtÞ.
This describes the discrete model. In Short et al.,1 the \na€�ve" continuum limit

(cf. above remark) for the above system was derived using a common procedure in

mathematical biology30�34,17,35,36,18,37,38:

@Bðx; tÞ
@t

¼ �

4
�Bðx; tÞ � !Bðx; tÞ þ ��ðx; tÞ�Aðx; tÞ; ð1:5Þ

@�ðx; tÞ
@t

¼ ��Aðx; tÞ�ðx; tÞ � ��ðx; tÞ þ �þ 1

4
��ðx; tÞ

� 1

2
r � ð�ðx; tÞr logAðx; tÞÞ: ð1:6Þ

These resulting equations are closely related to the Keller�Segel model for

chemotaxis.39�42,4,43�47

As the model evolves in time we note, dependent on parameters and initial con-

ditions, only three distinct types of behaviors of the attractiveness ¯eld appear to be

possible1; output from computer simulations can be found in Fig. 2. The simplest is

spatial homogeneity (Fig. 2(I)) with an attractiveness ¯eld that is essentially the

same everywhere. The next possible behavior is dynamic hotspots (not shown). In

this regime, hotspots ��� regions of large value of A and/or high rate of burglary ���
appear and disappear as time evolves. Hotspots may reappear in the same places

repeatedly, or they may appear in seemingly random locations. However, it seems

that this sort of behavior is a result of random noise augmented by the ¯nite size of

the system. In particular, no such behavior is observed in the continuum PDE and in

the discrete model, noisy/dynamic behavior does not persist in large-scale systems.

This does not imply that the e®ect is unimportant or irrelevant to actual urban

activities. Indeed, it is worth remarking that the latter is more accurately modeled by

a discrete system than the continuum limit thereof. The third and ¯nal regime is that

of stationary hotspots (Figs. 2(II)�2(III)). This regime is described by hotspots that

nucleate, grow to a characteristic size, and then remain stationary \for as long as one

cares to observe" (see Cross and Hohenberg48). Here the system is apparently exhi-

biting one of many possible long-lived steady states.

To perform any meaningful analysis on our simulations, we need a metric to

determine the amount of criminal activity. Ostensibly, we could use the number of

burglary events, but this has a few drawbacks. First, there are families of systems with

the same behavior, but di®erent levels of criminal activity. For example, the crime
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patterns in two instances may be the same, but the number of criminals vary ��� an

e®ect that can be achieved by reducing � and increasing �. Moreover, it is possible to

produce two systems of di®erent sizes with the same crime patterns. Second, burglary

is a relatively rare event; the number of burglaries that occur in any given time-step

may vary widely. Thus, to draw any meaningful information from the number of

burglaries, a temporal average must be taken.

Fig. 2. (Color online) Simulations showing the formation of hotspots. All simulations were run on a

100� 100 grid with background attractiveness, A0 � A0
s ¼ 0:1:We output the results of the simulations as

a color map using the predicted average attractiveness, �A, as the midpoint. Values of AsðtÞ that satisfy
0 � AsðtÞ � �A are represented with colors ranging from dark blue to light blue to light yellow. The colors
light yellow to orange to dark red represent values of AsðtÞ between �A and 5 �A. Attractiveness values above

5 �A are also represented with dark red. Each simulation was started with initial conditions b10;000��c
randomly placed criminals and Asð0Þ ¼ �A. In I(a)�I(c), the simulation was run with the parameters

� ¼ 0:05, � ¼ 1:0, ! ¼ 4� 10�4, � ¼ 0:02, � ¼ 2:5� 10�4, and � ¼ 6:25� 10�4. In II(a)�II(c) the simu-
lation was run with parameters � ¼ 0:05, � ¼ 1:0, ! ¼ 3� 10�3, � ¼ 8� 10�3, � ¼ 4� 10�3, and

� ¼ 4� 10�3. Finally, III(a)�III(c) displays the results of a simulation run with parameters � ¼ 0:05,

� ¼ 1:0, ! ¼ 1:875� 10�4, � ¼ 5� 10�4, � ¼ 2:5� 10�4, and � ¼ 6:25� 10�4. In all of the above, ACA
denotes the number of active criminal agents.

1404 P. A. Jones, P. J. Brantingham & L. R. Chayes



The spatial average of BsðtÞ, which we denote BAvðtÞ, is related to the amount of

criminal activity. For any time, T,

BAvðT Þ ¼ ð1� !ÞTBAvð0Þ þ �
XT
n¼1

ð1� !Þn�1EAvðT � nþ 1Þ;

where EAvðtÞ is the spatial average of the number of burglaries that occurred at each

site at time t. As 0 < ! < 1, BAvðtÞ provides a reasonable proxy for amount of

criminal activity, while averaging out some of the volatility. Thus in what follows, we

will equate BAvðtÞ to the level of criminal activity.

This naturally leads to a question: how much crime do we expect? To answer this,

we exploit the relationship between the discrete and continuum models. Following

the procedure used to calculate Eqs. (3.4) and (3.5), we estimate the attractiveness

and criminal density of spatially homogeneous steady state solutions

�B �
�!A0 þ ���� !�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�!A0 þ ���� !�Þ2 þ 4�!2A0�

q
2�!

� A0 ð1:7Þ

and

�� �
�!A0 þ ���þ !��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�!A0 þ ���þ !�Þ2 � 4�!���

q
2���

; ð1:8Þ

where A0 is the spatial average of A0
s. Strictly speaking, these equations are only

valid for the continuum model, but for large enough system sizes, the two models

behave similarly. Thus, the above quantities in Eqs. (1.7) and (1.8) provide a

reasonable estimate for a steady state solution with no hotspots.

When crime hotspots are present, the estimates provided by Eqs. (1.7) and (1.8)

are no longer valid. Figure 2 shows that we can expect much higher levels of criminal

activity when hotspots are present.

2. Law Enforcement

In this section we add law enforcement agents to the above model with the goal of

reducing the amount of criminal activity in the system. In the simulations and the

linear stability analysis presented by Short et al.,1 it is clear that the presence or

absence of hotspots is a threshold phenomenon ��� small changes in parameters can

create a large change in the system. Furthermore, as demonstrated by simulations of

the model used in this present work (Fig. 2), the presence of hotspots may increase

the overall level of criminal activity while the total number of active criminal agents

may decline. These two points suggest that a relatively small number of law enfor-

cement agents acting appropriately can have a dramatic e®ect.

The remainder of this section is divided into three parts. First, in modeling law

enforcement agents we must consider their e®ect on the environment and how

criminal agents respond to their presence. We then present three di®erent methods to
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determine the agents' patrol routes. Finally, we examine the e®ect of the law enfor-

cement agents in computer simulations.We will observe that the primary factor in the

law enforcement agents' e®ectiveness is their deployment strategy.

2.1. Modeling the e®ects of law enforcement

We add law enforcement agents to the model starting with the lattice version. Let

�sðtÞ be the number of enforcement agents at the site s at time t. These agents will

only attempt to deter the criminal agents from committing burglary events. Below,

we will present two mechanisms: the ¯rst modi¯es how criminal agents perceive their

environments. The other has a direct e®ect on the agents' actions.

2.1.1. Perception modi¯cation

In the context of the model, both the movement of a criminal agent and the criminal

agent's \decision" to commit a burglary are a®ected only by the local target attrac-

tiveness values. If we allow enforcement agents to modify the attractiveness values,

they will ultimately be able to control the level of criminal activity. However, the law

enforcement e®ect must not be permanent; if there is no longer a law enforcement

presence, criminal agents will once again ¯nd the house attractive to burglary.

With these considerations in mind, we introduce a variable that represents the

attractiveness values that criminals perceive in the presence of enforcement agents.

Thus

~AsðtÞ � e���sðtÞAsðtÞ;
where � is a positive constant.

Now we modify our discrete formulas to include the e®ect of police o±cers. The

probability that a criminal agent commits a burglary at site s at time t is

~psðtÞ ¼
� ~AsðtÞ

1þ � ~AsðtÞ
:

The probability that a criminal agent moves from site s to a neighboring site n is

~AnðtÞP
s 0�s

~As 0 ðtÞ
:

Therefore Eq. (1.4) becomes

�sðtþ 1Þ ¼ ð1� �Þ ~AsðtÞ
X
s 0�s

ð1� ~ps 0 ðtÞÞ�s 0 ðtÞ
~T s 0 ðtÞ

þ �; ð2:1Þ

where

~T sðtÞ ¼
X
s 0�s

~As 0 ðtÞ:
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Changing the evolution of the criminals, however, also changes the evolution ofBsðtÞ.
Thus Eq. (1.3) becomes

Bsðtþ 1Þ ¼ BsðtÞ þ
�

4
�BsðtÞ

h i
ð1� !Þ þ �

� ~AsðtÞ
1þ � ~AsðtÞ

nsðtÞ: ð2:2Þ

These give the na€�ve continuum formulas

@Bðx; tÞ
@t

¼ �

4
�Bðx; tÞ � !Bðx; tÞ þ ��ðx; tÞ� ~Aðx; tÞ ð2:3Þ

and

@�ðx; tÞ
@t

¼ �� ~Aðx; tÞ�ðx; tÞ � ��ðx; tÞ þ �

þ 1

4
��ðx; tÞ � 1

2
r � ð�ðx; tÞr log ~Aðx; tÞÞ: ð2:4Þ

In short, we have Eqs. (1.5) and (1.6) with A replaced by ~A. This is not to say the

systems are identical since now Eqs. (2.3) and (2.4) are part of a larger conglomerate

in which the dynamics of �s are included.

2.1.2. Behavior modi¯cation

There is another possible model for the interaction of cops and criminals. Rather than

the cops a®ecting the environment, they will in°uence the criminals directly. If a

criminal agent comes into contact with an enforcement agent, then with some

probability, the criminals will opt to \return home". More precisely, with probability

J�sðtÞ
1þ J�sðtÞ

;

a criminal agent at site s will be removed. Here J is a positive constant. Thus

Eq. (1.4) becomes

�sðtþ 1Þ ¼ ð1� �ÞAsðtÞ
X
s 0�s

1

1þ J�s 0 ðtÞ
ð1� ps 0 ðtÞÞ�s 0 ðtÞ

Ts 0 ðtÞ
þ �

and the corresponding continuum equation becomes

@�ðx; tÞ
@t

¼ ð��Aðx; tÞ � �� J�ðx; tÞÞ�ðx; tÞ

þ�þ 1

4
��ðx; tÞ � 1

2
r � ð�ðx; tÞr logAðx; tÞÞ: ð2:5Þ

2.2. Dynamics of law enforcement

As alluded to earlier, the above only covers part of the relationship between law

enforcement, criminals, and their environment; the choice of the law enforcement
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agents' patrol routes will also in°uence the evolution of the rest of the system. To

proceed, we make a couple of simplifying assumptions on the behavior of the enfor-

cement agents: ¯rst, we will demand that the number of agents on patrol is constant.

This re°ects, in part, the reality of the limited resources of the police department. We

will also assume that the agents move through the city on the ground (i.e. on foot, by

car, or some other vehicle). In other words, law enforcement will move through the

system, house to house, like the criminal agents. We will propose various strategies

that satisfy the above criteria and compare their relative e®ectiveness.

2.2.1. Random walkers

One possibility is for law enforcement agents to patrol random routes. Here police do

not focus their attention on any particular place. The hope is that criminal activity

will be reduced, as the criminal agents will never know when an enforcement agent

will be near. This method has been tried, without much success, in Kansas City.48 We

model the patrols by having the law enforcement agents perform an unbiased simple

random walk. Thus, the expected number of law enforcement agents at site s and at

time tþ 1 is

�sðtþ 1Þ ¼ 1

4

X
s 0�s

�s 0 ðtÞ ¼ �sðtÞ þ
1

4
��sðtÞ:

This leads to the continuum equation

@�ðx; tÞ
@t

¼ 1

4
��ðx; tÞ: ð2:6Þ

The random patrol method has an obvious downside: enforcement agents will

often be located in places where the level of criminal activity is already low. We will

now introduce two alternative schemes in which police will concentrate their atten-

tion in areas where their presence will have a greater e®ect.

2.2.2. Cops on the dots

In this scheme the law enforcement agents move randomly but with a bias in the

direction of high attractiveness. We will call this method of policing cops on the dots.

Traditionally, some police departments have marked criminal events with mar-

kers or dots on a centrally located map. Police o±cers are then directed to focus on

patrolling the areas denoted by the dots. Similarly, in our model the law enforcement

agents will tend to patrol areas with relatively high attractiveness ��� areas corre-

lated with a high number of individual burglary events.

As we will see, cops on the dots is e®ective in reducing criminal activity. In the

model, criminal agents tend to move from areas of low attractiveness to places where

it is higher. Furthermore, criminal agents are more likely to commit crimes in these

areas of higher attractiveness. Cops on the dots enforces the reverse tendency. Law

enforcement agents patrol areas with high attractiveness which reduces the likelihood
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that criminal agents will commit crimes in these areas (and, in the perception

modi¯cation model, biases them toward locations with lower attractiveness ��� places

where they are less likely to commit crime). A criminal agent in this situation is more

likely to return home without having performed any criminal activity. The overall

e®ect is that the global statistical rate of burglary is lowered.

We model cops on the dots as follows: the probability a law enforcement agent

moves from a site s to a neighboring site d is

AdðtÞP
s 0�s

As 0 ðtÞ
:

We then see that the expected number of law enforcement agents at site s at time

tþ 1 is

AsðtÞ
X
s 0�s

�s 0 ðtÞ
Ts 0 ðtÞ

:

The corresponding continuum equation reads

@�ðx; tÞ
@t

¼ 1

4
��ðx; tÞ � 1

2
r � ð�ðx; tÞr logAðx; tÞÞ: ð2:7Þ

2.2.3. Peripheral interdiction

To maximize the deterrent e®ect given the constraint of limited resources, we

introduce another scheme. We will send the law enforcement agents to the perimeters

of the hotspots rather than the centers. Since the area of a hotspot grows as a square

of its radius, but the perimeter grows only linearly, we expect that this method will be

more e®ective for larger hotspots.

Like cops on the dots, this method reduces criminal activity in areas where its rate

is the highest. We have already observed that criminals tend to move to areas with

high attractiveness. In fact, this mechanism is largely responsible for the higher rate

of criminal activity in these locations. When the law enforcement agents encircle the

hotspot, they are reducing the rate at which this advection occurs, thereby lowering

the rate of criminal activity. We call this method of policing peripheral interdiction.

An artifact of the model is a technical di±culty in biasing the enforcement agents

towards the peripheries of the hotspots. Of course in realistic situations, this would

be achieved by dispatching under a centralized control. For our purposes, the

steps s ! s 0 of the enforcement agents are biased by weights proportional to

expf�jc1Bs 0 � c2jg where c1 and c2 are constants chosen according to the parameters

of the simulation. This term biases the agents to a certain level of Bs 0 ; in our case, to

a level of attractiveness found on the perimeter of the hotspots. Unfortunately,

considering the di±culty of these sorts of biases ��� not to mention the unrealistic

assumption of enforcement agents moving autonomously according to such a bias ���
a continuum PDE analysis of the peripheral interdiction strategy is impractical. In

this work, we will be contented with the results of the discrete simulations.
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2.3. Results of discrete simulations

In this section we will describe the results of computer simulations of the discrete

model outlined in this work. Here, we only present the output using the perception

modi¯cation model, but we note that both schemes are e®ective in performing the

task that they were created for ��� namely the reduction of crime.

Regardless of which policing scheme is used we notice some general trends. First, a

reduction in criminal activity is correlated with an increase in the number of active

criminal agents in our system. While surprising at ¯rst, this is to be expected.

Criminals are removed from the system when they commit a burglary and reintro-

duced at a rate that is independent of all other quantities. Thus, if there are fewer

burglaries there will be more active criminal agents searching for viable targets. Both

aspects of the model, though simpli¯ed, are consistent with criminological obser-

vations. The propensity to o®end is widely distributed within populations and the

suppression of criminal opportunity, though reducing crime, does not eliminate

criminal propensity.3

We also note that even after law enforcement agents have eliminated a hotspot it

may be the case that, nearby, another hotspot will emerge. Indeed, even with law

enforcement agents present, a region may be on the verge of instability which means

that a hotspot will nucleate with their diminished presence. Thus, under certain

circumstances, even after hotspots have been eliminated, we may expect their

reappearance ��� at least temporarily. This e®ect will be more noticeable with small

hotspots as they tend to form more quickly while the time it takes for the law

enforcement agents to react and respond to a new hotspot does not depend on its size.

The elimination of crime hotspots may have another unfortunate side e®ect: while

crime is reduced in the areas with the highest criminal activity it may actually be

increased in areas where the criminal activity is lower. Displacement of crime has

been one outcome observed in ¯eld-based tests of hotspot policing.49 If criminal

agents are spending more time outside the center of a crime hotspot, they will be

more likely to commit crimes in low crime areas.

Starting with the same law enforcement resources, it is seen that the schemes have

vastly di®erent e®ectiveness (Figs. 5 and 6). The worst scheme is random which is

largely ine®ective in reducing criminal activity (without the commitment of satur-

ation level resources). Conversely, cops on the dots and peripheral interdiction are far

better at eliminating criminal activity. Cops on the dots tends to be more e®ective

with small hotspots and peripheral interdiction is more e®ective with larger hotspots.

Cops on the dots tends to scale smoothly with the number of law enforcement

agents. Peripheral interdiction exhibits more of a threshold e®ect. When the number

of agents is too small to seal o® the perimeter of even a single hotspot, peripheral

interdiction is largely ine®ective. However once the number of agents has passed a

minimum threshold, peripheral interdiction is suddenly e®ective. This suggests that

under extreme conditions of high criminal activity and limited enforcement resources,

cops on the dots is the better scheme.
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Finally, we see that cops on the dots seems to eliminate hotspots faster than

peripheral interdiction. This is mostly due to the fact that, in the context of the

model, there is a delay time for the biased random movements of the enforcement

agents to ¯nd a hotspot and set up a perimeter. In practice this would be mitigated by

a centralized dispatching scheme: by telling enforcement agents exactly where to

patrol, an e®ective perimeter will be set up almost immediately.

We also notice that the hotspots tend to be eliminated sequentially when

peripheral interdiction is used. Once one hotspot has been eliminated, law enforce-

ment agents are free to move to other hotspots, initiating action or helping to seal o®

their perimeters.

3. Analysis

In this section we will analyze the continuum equations to determine the e®ect of law

enforcement agents. The ¯rst step is to simplify Eqs. (2.3) and (2.4). If we assume

that A0 is spatially (and temporally) homogeneous, then Eq. (2.3) can be written in

terms of A alone. Furthermore, by various rescalings and rede¯nitions (�H ¼ ��,

�H ¼ ��, �H ¼ 1
4 � and C ¼ !A0 and omitting the H's) we arrive at

@A

@t
¼ ��A� !Aþ C þ �� ~A;

@�

@t
¼ �� ��� �� ~Aþr � ðr�� 2�r log ~AÞ:

ð3:1Þ

We begin our study of the system by analyzing equilibrium solutions ��� that is,

solutions, A; �, that satisfy @A=@t � @�=@t � 0 ��� when all parameters are strictly

positive. First, we show the existence of a particular homogeneous equilibrium sol-

ution in the absence of law enforcement. Indeed, if �A; �� is a homogeneous equilibrium

solution to Eq. (3.1), then the following equations are satis¯ed:

0 ¼ �! �Aþ C þ ��� �A; ð3:2Þ
0 ¼ �� ��� � ��� �A: ð3:3Þ

which, formally, yields the two solutions:

�A� ¼ �C þ ��� !�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�C þ ��� !�Þ2 þ 4�!C�
p

2�!
;

��� ¼ �C þ ��þ !�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�C þ ��þ !�Þ2 � 4�!��
p

2��
:

However, since

�C þ ��� !� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�C þ ��� !�Þ2 þ 4�!C�

p
;
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Fig. 3. The relative e®ectiveness of law enforcement schemes with small hotspots. Each simulation is a

continuation of the one displayed in Fig. 2(II)��� that is, the parameters are the same and initial conditions
are given by the state of the system at Fig. 2(IIc) ðt ¼ 128� 103Þ. The unbiased walkers scheme performs

poorly. Peripheral interdiction and cops on the dots are roughly comparable.

Fig. 4. The relative e®ectiveness of law enforcement schemes with large hotspots. Each simulation is a

continuation of the one displayed in Fig. 2(III) ��� that is, the parameters are the same and initial

conditions are the state of the system at Fig. 2(IIIc) ðt ¼ 128� 103Þ. The unbiased walkers scheme per-

forms poorly. Cops on the dots is better at reducing than peripheral interdiction for low numbers of law
enforcement agents. Peripheral interdiction, however, outperforms cops on the dots as the number of law

enforcement agents increases.
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�A� < 0 and hence \aphysical" (i.e. does not correspond to an actual situation). We

may therefore eliminate from considering the pair ðA�; �þÞ and have thus proved the

following:

Proposition 3.1. If �ðx; tÞ � 0, and �;�;C; � and ! are positive, then there is a

unique spatially homogeneous solution of Eq. (3.1) given by

�A ¼ �C þ ��� !�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�C þ ��� !�Þ2 þ 4�!C�
p

2�!
; ð3:4Þ

Fig. 5. Sub¯gures I, II and III compare the relative e®ectiveness of di®erent law enforcement strategies on

a system with pre-existing hotspots. In each case, 300 law enforcement agents are added. To make a law
enforcement agent 99% e®ective at preventing crime at its current site, � ¼ 4:605170. The simulations are

continuations of the simulation displayed in Fig. 2(II) ��� that is, the parameters are the same and initial

conditions are the state of the system at Fig. 2(IIc) ðt ¼ 128� 103Þ. The unbiased walker patrol method

performs the worst. Cops on the dots and peripheral interdiction are roughly comparable after some time,
but the latter method is less e®ective for short times. Note that a peculiar side e®ect of our model is that a

reduction in crime is associated with an increase in active criminal agents. This is a result of the fact that

fewer criminals committing burglaries implies fewer criminals are being removed from the system.
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�� ¼ �C þ ��þ !�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�C þ ��þ !�Þ2 � 4�!��
p

2��
: ð3:5Þ

We are now in a position to examine the e®ect of law enforcement agents on the

equilibrium solution. Suppose that the law enforcement agents are patrolling ran-

domly, that is, they are evolving according to Eq. (2.6).

Eventually, the law enforcement agent density tends to a constant ��� that is,

�ðx; tÞ ¼ �0 ��� and it is seen that in the system Eq. (3.1) we may remove all tildes at

the expense of � ! e��0��. Therefore, with the random strategy, an increase in the

number of law enforcement agents is equivalent to a decrease in �. The purpose of

Fig. 6. Sub¯gures I, II, and III compare the relative e®ectiveness of di®erent law enforcement strategies on

a system with pre-existing hotspots. In each case, we add 300 law enforcement agents. We set
� ¼ 4:605170; this implies that one law enforcement agent is 99% e®ective at preventing crime at its

current site. The simulations are continuations of the simulation displayed in Fig. 2(III) ��� that is, they

share the same parameters and initial conditions as the state of the system at Fig. 2(IIIc) ðt ¼ 128� 103Þ.
Again, the unbiased walkers scheme is ine®ective. Although cops on the dots performs slightly better for
short periods of time, peripheral interdiction is the best method in the long run.
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adding law enforcement agents to the system was to reduce the amount of crime

being committed. Thus, as far as the random strategy is concerned, this amounts to

showing that a decrease in � causes a reduction in crime. First, we must pause to

determine how to de¯ne \reduction in crime".

In equilibrium, the total attractiveness of the system jjAjjL 1 is linearly related to

the rate of burglaries as can be seen directly from Eq. (3.2). Moreover, with periodic

or Neumann boundary conditions, this is true for long-time averages ��� appropriate

limits taken. Indeed, integrating and averaging:

@A

@t
¼ ��A� !Aþ C þ �A� ¼ 0;

hjjAjjL 1i ¼ 1

!
ðC þ hjj�A�jjL1iÞ;

which is just the equilibrium result. Thus in what follows, we will consider a reduction

in A to be equivalent to a reduction in criminal activity.

Since in this section we are concerned with the e®ect of law enforcement and we

have shown the relationship between � and the equilibrium number of cops, from this

point forward we will treat � 2 Rþ as a parameter. And we will treat various vari-

ables as functions of � when it is convenient.

The following lemma proves in part a weak version of the statement that an

addition of law enforcement o±cers causes a reduction in the amount of criminal

activity.

Lemma 3.1. The equilibrium solution, �A, is an increasing function of �. Likewise,

the equilibrium solution, ��, is a decreasing function of �.

Proof. By di®erentiating Eq. (3.4) with respect to � we see that

@ �A

@�
¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ �� !�

�

� �
2

þ 4
!�

�
C

s
� C þ �� !�

�

" #

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ �� !�

�

� �
2

þ 4
!�

�
C

s

>
�

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ �� !�

�

� �
2

þ 4
!�

�
C

s C � �þ !�

�

����
����� C � �þ !�

�

����
����

� �

	 0:

The ¯rst inequality follows from

C þ �� !�

�

� �
2

þ 4
!�

�
C > C þ �� !�

�

� �
2

þ 4
!�

�
C � 4C�

¼ C � �þ !�

�

� �
2

:
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It is noted directly from the combination of Eqs. (3.2) and (3.3) that since ! �Aþ
�� is constant, then if one increases while the other decreases. Nevertheless, we

attack � directly:

@��

@�
¼ �

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ �þ !�

�

� �
2

� 4
!�

�

s
� C þ �� !�

�

" #

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ �þ !�

�

� �
2

� 4
!�

�

s

< � !

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ �þ !�

�

� �
2

� 4
!�

�

s C � �þ !�

�

����
����� C � �þ !�

�

����
����

� �

� 0:

Where the ¯rst equality follows from

C þ �þ !�

�

� �
2

� 4
!�

�
> C þ �þ !�

�

� �
2

� 4
!�

�
� 4�C

¼ C � �þ !�

�

� �
2

:

To obtain a deeper understanding of our system we perform a linear stability

analysis at the spatial equilibrium values as described e.g. in Boyd.51 Thus we line-

arize the system as follows: we perturb the system around the equilibrium values by a

constant times e�tþikx and study the resulting linear system. We get

@

@t

�Aþ �Ae
�tþikx

�� þ ��e
�tþikx

" #
¼ �e�tþikx

�A
��

� �

¼ e�tþikx
��k2 � !þ ��� � �A

���� þ 2
��
�A
k2 ��� � �A� k2

2
4

3
5 �A

��

� �
: ð3:6Þ

By studying the eigenvalues of the above matrix we can determine when the

system is linearly unstable. The two eigenvalues of the system are

	� ¼ Tr
M

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr

M

2

� �
2

� detM

s
;

where M is the 2� 2 matrix featured in Eq. (3.6).

TrM < 0 as ��� � �A� k2 < 0 and

��k2 � !þ ��� ¼ ��k2 � C

A
< 0;

where the equality in the above display follows from Eq. (3.2). Since 	� < 0 the

spatial equilibrium is stable ��� that is 	þ > 0 if and only if detM < 0. A simple
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calculation shows that

detM ¼ �k4 þ C
�A
þ ��þ �� �A� 2���

� �
k2 þ �

C
�A
þ �C þ �2�� �A: ð3:7Þ

We will ignore the question of when the spatially homogeneous equilibrium is

unstable and only assert that unstable regions exist. Instead we will consider how an

unstable system behaves as � is changed.

Theorem 3.1. Let �; !;C;�;� > 0 be ¯xed. Then there exist constants �1; �2 so that

if � < �1 or � > �2, then the solution �Að�Þ; ��ð�Þ is linearly stable.

Proof. To show that a spatially homogeneous solution, �Að�Þ; ��ð�Þ, is stable we must

prove that detMð�Þ > 0 for all k. Note that the terms which are quartic and constant

in k are manifestly positive. Thus it is enough to show that for � su±ciently small/

large the coe±cient of k2 is also positive. We use the facts:

lim
�!0

�Að�Þ ¼ C

!
and lim

�!0
��ð�Þ ¼ �

�
; ð3:8Þ

to see that

lim
�!0

C
�A
þ ��þ �� �A� 2���

� �
¼ ð��þ !Þ:

Thus by continuity there exists �1 > 0, such that the object under the limit is positive

for 0 < � < �1 which implies that for all k, detMð�Þ > 0. This completes one-half of

the proof.

Since

lim
�!1 ���ð�Þ ¼ 2!��

C þ �
and lim

�!1
�Að�Þ ¼ C þ �

!
;

it is clear that

lim
�!1

C
�Að�Þ þ ��þ �� �Að�Þ � 2���ð�Þ ¼ 1:

Thus there exists �2 > 0 so that for � > �2 we have

C
�Að�Þ þ ��þ �� �Að�Þ � 2���ð�Þ > 0

and thus, for all k, detMð�Þ > 0 for � > �2.

Under most conditions, and by most criteria, the presence of law enforcement

agents has the desired e®ect of reducing criminal activity. However with special

regards to the � > �2 portion of the preceding, the preliminary implication is that the

addition of law enforcement agents can destabilize a quiescent environment. The

statement must be quanti¯ed:

(1) Although in this regime crime hotspots do emerge with the injection of law

enforcement agents — thereby exhibiting increased criminal activity in certain
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locales — it appears that the overall level of criminal activity actually decreases.

Indeed, numerical simulations suggest monotonicity of the total amount of crime

with respect to �. Figure 7 clearly shows that jjAð�; �ÞjjL 1 is increasing in �.

(2) While no attempt has been made in this work to calibrate the simulation

dynamics with actual crime statistics, in the authors' opinion, the worst (dom-

estic) scenarios roughly correspond to the vicinity of � ¼ �1. The activity level for

� 	 �2 may correspond to circumstances where drastic alternative modes of

response must be considered.

We have seen that, under the full dynamics, cops on the dots tends to outperform

the random strategy. By and large, this trend persists with regard to the stability

analysis; especially under circumstances of \limited resources".

Theorem 3.2. Let �A; ��; �� be a spatially homogeneous equilibrium solution of

Eqs. (3.1) and (2.6). If the solution is stable and �� �C
4�! then �A; ��; �� is a stable solution

of Eqs. (3.1) and (2.7).

We start with a preliminary result:

Lemma 3.2. Suppose fðxÞ is a monic cubic polynomial satisfying

fðxÞ ¼ ðxþ AÞðx2 þ Bxþ CÞ A;B;C > 0: ð3:9Þ

Fig. 7. Shows the relationship between the actual and predicted levels of attractiveness. Each numerical

simulation was run with parameters � ¼ 0:0125, � ¼ 1:0, ! ¼ 3� 10�3, � ¼ 4� 10�3 and � ¼ 4� 10�3 on

� ¼ ½0; 200
 � ½0; 200
 � R2 with Neumann boundary conditions. The system was run to equilibrium. The

formation of crime hotspots causes the total level of crime to be much larger than the spatially homo-
geneous level for some values of �.
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If hðxÞ � fðxÞ þDAxþ 
DA2 where 
 > 1;D > 0 and ð
� 1ÞD < B, then hðxÞ can
be written in the form

hðxÞ ¼ ðxþ EÞðx2 þ FxþGÞ E;F ;G > 0: ð3:10Þ
Proof. Let gðxlÞ � DAxþ 
DA2. First we note that limx!�1 hðxÞ ¼ �1. As

hð�AÞ ¼ ð
� 1ÞDA2 > 0 we see that hðxÞ has a root, x0, in ð�1;�AÞ. Let E ¼
�x0 > A > 0: Since hð0Þ ¼ EG ¼ AC þ 
DA2, we have

G ¼ hð0Þ
E

<
AC þ 
DA2

A
¼ C þ 
DA < DAþ ABþ C ¼ h 0ð0Þ ¼ EF þG;

where the last inequality follows from ð
� 1ÞD < B. Thus we see that F > 0.

Finally, we note that

G ¼ hð0Þ
E

> 0;

to complete the proof.

Proof. (Proof of Theorem 3.2) We begin by perturbing the system around its

equilibrium values. We have

@

@t

�Aþ �Ae
�tþikx

�� þ ��e
�tþikx

�� þ ��e
�tþikx

2
64

3
75 ¼ �e�tþikx

�A
��
��

2
4

3
5

¼ e�tþikxN

�A
��
��

2
4

3
5;

(a) � ¼ 1:00� 10�3 (b) � ¼ 1:39� 10�3 (c) � ¼ 2:68� 10�3 (d) � ¼ 5:18� 10�3

(e) � ¼ 1:00� 10�2 (f) � ¼ 2:68� 10�2 (g) � ¼ 5:18� 10�2 (h) � ¼ 1:00� 10�1

Fig. 8. Displays the attractiveness, A, for some of the numerical simulations shown in Fig. 7. Figures 8(a)

and 8(h) are solutions where the spatially homogeneous solution is stable. Figures 8(b)�8(g) show sol-
utions where the spatially homogeneous solution is unstable. We note that if � is small we observe a small

number of hotspots that are large, in magnitude. If � is large, we observe many hotspots that are small in

magnitude.
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where

N ¼

��k2 � !þ �e������ �e���� �A ��� �Ae������

��e������ þ 2
��
�A
k2 ��� �e���� �A� k2 �� �Ae������ � 2���k2

2
��
�A
k2 0 �k2

2
66664

3
77775:

We denote the 2� 2 upper-left submatrix of N as M . Thus the characteristic

polynomial of N, pNð	Þ, is
pNð	Þ ¼ �ð	þ k2ÞpMð	Þ � 2����e������k2ð3k2 þ 	Þ: ð3:11Þ

Now, pMð	Þ ¼ 	2 � TrM	þ detM , where TrM < 0 and detM > 0 since we

assumed that �A; ��; �� is a stable solution of Eqs. (3.1) and (2.6). To show that �A; ��;

�� is a stable solution of Eqs. (3.1) and (2.7) we must show that the roots of pMð	Þ
have negative real part. The results follow after an application of Lemma 3.2 which

requires that

4����e������ < �e������
�C

�!
� �e���� C

!
� �e���� �A < �TrM ;

where the ¯rst inequality follows by assumption and the second and third inequalities

follow from Lemma 3.1 and the limits in display (3.8).

As it turns out, under more extreme conditions, cops on the dots is not always the

most e®ective strategy for maintaining quiescence. This will be demonstrated after

the following:

Lemma 3.3. Suppose fðxÞ is a monic cubic polynomial satisfying

fðxÞ ¼ ðxþAÞðx2 þ Bxþ CÞ; ð3:12Þ
where ð
� 1ÞA > B > 0, C > 0, and 
 > 1. Then there exists D0 > 0 such that if

D > D0 then hðxÞ � fðxÞ þDAxþ 
DA2. Then hðxÞ has a root with positive real

part.

Proof. Let

D0 � � fð�A� BÞ
ð
� 1ÞA2 �AB

:

Then for D > D0 we have

hð�A� BÞ ¼ fð�A� BÞ þ 
DA2 �DAðAþ BÞ > 0:

We also note that

hð�
AÞ ¼ fð�
AÞ < 0

since the assumption B < ð
� 1ÞA implies that any real root of fðxÞ is greater than
ð1� 
ÞA as the smallest real root of x2 þBxþ C is bounded below by �B. Thus

hðxÞ has a root, x0, satisfying x0 2 ð�
A;�A� BÞ. Now indeed we can write hðxÞ in
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the form

hðxÞ ¼ ðx� x0Þðx2 þ FxþGÞ
for some constants F ;G. But since

�x0 þ F ¼ h 00ð0Þ ¼ f 00ð0Þ ¼ Aþ B;

we must have

F ¼ x0 þ Aþ B < ð�A�BÞ þ Aþ B < 0:

Thus hðxÞ has a root with positive real part.

With Lemma 3.3 we can show that cops on the dots is not always linearly stable

when the random patrol method is linearly stable. If � < 1 we can choose k2 such that

�TrM < 2k2. By changing �; � and � we can make the factor in Eq. (3.11)

2����e������

arbitrarily large while keeping �e���� , and thus every other term, constant. Thus

we can apply Lemma 3.3 with D ¼ 2����e������ to get the result. However, we

re-emphasize that the circumstances of this \exchanged stability" are not likely to

correspond to realistic urban scenarios.

4. Summary

In this paper, we have examined the impact of introducing police intomodels involving

mobile criminal o®enders and stationary targets, which are known to generate crime

hotspot patterns. We studied both discrete agent-based models and related con-

tinuum models and ¯nd that the introduction of structured policing strategies can

eradicate crime hotspots. Speci¯cally, so-called \cops on the dots" is an e®ective

strategy for eliminating smaller hotspots, while so-called \peripheral interdiction" is

more e®ective with larger hotspots. A baseline comparison shows that random patrol

does not lead to e®ective hotspot dissipation. Combined, our results suggest that it

may be possible to design spatial policing strategies from ¯rst principles.
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