Paleoenvironmental and archaeological investigations at Qinghai Lake, western China: Geomorphic and chronometric evidence of lake level history

David Rhode a,*, Ma Haizhou b, David B. Madsen c, P. Jeffrey Brantingham d, Steven L. Forman e, John W. Olsen f

a Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA
b Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
c Texas Archeological Research Laboratory, University of Texas, Austin, TX 78712, USA
d Department of Anthropology, University of California Los Angeles, Los Angeles, CA 90095, USA
e Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
f Department of Anthropology, University of Arizona, Tucson, AZ 85721, USA

ABSTRACT

Qinghai Lake, located on the northeastern Qinghai–Tibet Plateau (Qing-Zang Gaoyuan), is China’s largest extant closed-basin lake. Its position relative to major Asian climate systems makes it sensitive to global climate change. The lake has been the subject of numerous paleoenvironmental investigations including dating of shoreline features around the lake basin. Here we report new age estimates of shoreline features, geomorphic exposures and archaeological sites that contribute to the development of a lake-level history for Qinghai Lake and a landscape model of the Qinghai Lake Basin. Lake highstands above 3230 m (w 36 m above the modern lake level) appear to date to late MIS 5, w 70–110 ka. The lake has had much more modest highstands since then: no evidence of MIS 3 lake stands higher than modern were found, and early Holocene highstands are no more than w 12 m above modern. If the age of highstands greater than 3230 m is confirmed through future work, then the Qinghai Lake Basin hydrologic balance prior to w 70 ka was dramatically different than after that time, including during the Holocene. A simple hydrologic balance model provides insights into the combination of precipitation, evaporation, and runoff generation needed to sustain the lake at 3260 m, the highest shoreline observed. A range of factors may explain the difference, primarily the relative strength of the East Asian monsoon. The basin was apparently subject to extensive alluviation during MIS 3, interrupted by widespread erosion and development of cryogenic features before and during the last glacial maximum (LGM). Loess that presently drapes much of the lower basin landscape began to be deposited after the LGM, w 16–18 ka. The landscape model outlined here has implications for archaeological visibility of early human occupation of the Qinghai–Tibet Plateau.

© 2009 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

The Qinghai–Tibet Plateau ranks among the most challenging terrestrial habitats on earth for human occupation. Extreme altitude, severe climate, and scant resources all served as effective constraints to early humans who tested the idea of living on the ‘roof of the world.’ By the early Holocene, though, people had found ways to make a living in the harsh Qinghai–Tibet Plateau environment above 4500 m (and other high-elevation plateaus in other parts of the world; Aldenderfer, 2003, 2006). An important step in this process of adjustment to life on the high Qinghai–Tibet Plateau was successful habitation of slightly lower altitudes on its margins, a step that people apparently took first during the late Pleistocene. The place where this process is best documented archaeologically is the Qinghai Lake Basin, on the northeastern fringe of the Plateau (Fig. 1). Evidence of Upper Paleolithic human occupation is known from the Qinghai Lake Basin dating from the terminal Pleistocene, and putatively older materials have been reported in the neighboring Qaidam Basin to the west (Huang, 1994; Huang and Hou, 1998; but cf. Brantingham et al., 2007). To obtain evidence regarding when modern humans first entered the northeastern Qinghai–Tibet Plateau, the Qinghai Lake Basin seemed an excellent place to begin. We have recently investigated the archaeological
evidence for this early human occupation (Brantingham et al., 2003, 2007; Brantingham and Gao, 2006; Madsen et al., 2006; Rhode et al., 2007). In so doing we are also concerned with the environmental history of Qinghai Lake itself, to establish the environmental context of early human colonization and to guide our decisions about which localities and exposed sediments are most likely to contain archaeological evidence of the right time period (Brantingham et al., 2003, 2007; Madsen et al., 2007).

To those ends, we recently investigated the environmental history of the Qinghai Lake Basin directed particularly toward the exposed shoreline history of the lake and the timing of deposition of loess and other deposits (Madsen et al., 2008). This paper summarizes our findings to date.

2. Setting

Qinghai Lake (also known as Koko Nor in Mongolian, and mTsho sngon po in Tibetan) is presently the largest extant closed-basin lake in China, one of the largest in Central Asia. It lies on the northeastern Qinghai–Tibet Plateau between 36.3°–38.3° N and 97.9°–101.3° E (Fig. 2), the terminus of a ~29,660 km² catchment (LZBCAS, 1994). The lake basin was formed during the late Miocene.
and Pliocene as part of the uplift of the northeastern Qinghai–Tibet Plateau (Métivier et al., 1998; An et al., 2001; Fang et al., 2005; Harris, 2006; Wang et al., 2008), originating a headwater basin feeding the proto-Yellow River. Tectonic uplift of the Riye Mountains closed the basin at the southeastern and eastern ends during the Middle to Late Pleistocene (Yuan et al., 1990; Pan, 1994; Li and Fang, 1999).

The lake has a surface altitude of \(\approx 3194 \text{ m} \) (measured in 1986) and a surface area of \(\approx 4300 \text{ km}^2 \), about one-seventh of its basin size. Surrounding mountains typically exceed 4000 m, reaching above 5000 m in the northwest basin; the highlands make up \(\approx 70\% \) of the drainage area. The region’s climate is cold and semi-arid, with a mean annual temperature of \(-0.7 \degree \text{C}\) subject to high seasonal differences (\(-12 \degree \text{C}\) in summer, \(-11 \degree \text{C}\) in winter). Mean annual evaporation is approximately \(\approx 925 \text{ mm} \) (1959–2000), with a gradient of \(\approx 1000 \text{ mm} \) at the lake surface to \(\approx 300 \text{ mm} \) in the surrounding mountains (Colman et al., 2007). Estimates of mean annual precipitation range from \(\approx 250–400 \text{ mm} \), with an average value of \(\approx 360 \text{ mm} \) and significant variability over the watershed (Walker, 1993; Qin, 1997; Qin and Huang, 1998; Yan et al., 2002; Shen et al., 2005; Yu, 2005; Colman et al., 2007; Li et al., 2007). Mean annual precipitation results in \(\approx 1.57 \times 10^3 \text{ m}^3 \) of direct input to Qinghai Lake’s water balance (LZBCAS, 1994; Li et al., 2007). Approximately 60% of annual precipitation falls during June–August, derived from storms generated by the East Asian Monsoon.

Dozens of drainages debouch into Qinghai Lake, but most are intermittent and typically dry. Five main permanent streams provide over 80% of total surface inflow, the Buha River being the intermittent and typically dry. Five main permanent streams, derived from storms generated by the East Asian Monsoon.

3. Methods

3.1. Field reconnaissance

Localities investigated in the Qinghai Lake Basin were mapped using a combination of satellite-based geographic positioning systems, accurate to within a few meters, 1:50,000 scale topographic maps, and Google Earth satellite imagery. Altitudes were obtained using the same topographic maps with contour intervals

Fig. 3. Surface areas for Qinghai Lake at the modern 3194 m altitude (blue), 3260 m (blue-green), and 3299 m, when it overflows through Ketu Pass (olive).
spaced 10 m apart, Google Earth imagery, and with barometric altimeters set to known altitudes.

3.2. Dating

We used radiocarbon age estimates where organic materials in reliable context were available, predominantly in archaeological sites. We used optically-stimulated luminescence (OSL) to date shoreline sediments beyond the range of radiocarbon dating and where organic remains were not present. Age estimates newly derived for this paper are given in Table 1. Age estimates we have previously reported (Madsen et al., 2008) are provided in Table 2.

Luminescence dating of sediments was completed on the fine-grained (4–11 μm) polymineral and coarse-grained (100–250 μm) quartz fractions. All samples were dated by the multiple aliquot regeneration (MAR) dose procedures, using component-specific dose normalization (CSDN) method (Forman and Pierson, 2002; Jain et al., 2003). Initially, the CSDN procedure determined equivalent dose with infrared (IR) stimulation and subsequently with green or blue light excitation. The sequence of OSL analysis (IR follows by green or blue light excitation) preferentially measures feldspar-sourced and then quartz emissions. The fine-grained polymineral extract was also analyzed by the multiple aliquot additive dose (MADD) methods, under infrared stimulation (880 ± 80 nm), by an automated Daybreak 1100 reader (Forman and Pierson, 2002; Jain et al., 2003). MAR analyses were completed under green (514 ± 20 nm) or blue (470 ± 20 nm) light excitation by a Daybreak reader. The resultant blue emissions were measured at ∼25 °C by a photomultiplier tube coupled with one 3-mm-thick Schott BG-39 and one 3-mm-thick Corning 7-59 glass filters; these emissions are the most suitable as a chronometer (Balescu and Lamothe, 1992; Lang et al., 2003). The background count rate for measuring emissions was <100 counts/s, with a signal-to-noise ratio of >20. A sample was excited for 90 s, and the resulting emissions was recorded in 1 s increments.

With two exceptions (UIC1658 and UIC1668), ages determined by IR and green- or blue-light excitation overlap at 2-sigma and thus are statistically similar. We favor the ages determined by green or blue light because quartz is a well-known and robust geochronometer, though of less temporal utility than feldspar (Pescott and Hutton, 1994). As a result, we use the green or blue ages for interpretive purposes. However, because of the general concordance of IR and green and blue ages, when green-excitation yields infinite ages the finite IR age is considered an appropriate age.

Table 1

<table>
<thead>
<tr>
<th>Locality Field</th>
<th>Laboratory number</th>
<th>Equivalent dose</th>
<th>A value</th>
<th>Uranium</th>
<th>Thorium</th>
<th>K2O</th>
<th>Cosmic dose rate</th>
<th>Total dose rate</th>
<th>OSL age</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS06-05 UIC2189IR</td>
<td>>277.71 ± 27.64</td>
<td>NA</td>
<td>1.2 ± 0.1</td>
<td>5.3 ± 0.1</td>
<td>2.42 ± 0.02</td>
<td>0.25 ± 0.02</td>
<td>2.73 ± 0.10</td>
<td>>101,865 ± 12,720</td>
<td></td>
</tr>
<tr>
<td>FS06-05 UIC2189II</td>
<td>>310.00 ± 30.44</td>
<td>NA</td>
<td>1.2 ± 0.1</td>
<td>5.3 ± 0.1</td>
<td>2.42 ± 0.02</td>
<td>0.25 ± 0.02</td>
<td>2.73 ± 0.10</td>
<td>>113,700 ± 14,160</td>
<td></td>
</tr>
<tr>
<td>FS07-51 UIC2175B</td>
<td>169.05 ± 9.39</td>
<td>NA</td>
<td>1.2 ± 0.1</td>
<td>5.4 ± 0.1</td>
<td>1.93 ± 0.01</td>
<td>0.19 ± 0.02</td>
<td>2.29 ± 0.11</td>
<td>73,750 ± 6750</td>
<td></td>
</tr>
<tr>
<td>FS05-07 UIC2177B</td>
<td>383.63 ± 2.60</td>
<td>0.08 ± 0.01</td>
<td>2.7 ± 0.1</td>
<td>11.1 ± 0.1</td>
<td>2.14 ± 0.02</td>
<td>0.20 ± 0.00</td>
<td>4.26 ± 0.20</td>
<td>90,080 ± 6700</td>
<td></td>
</tr>
<tr>
<td>FS05-07 UIC2177R</td>
<td>434.28 ± 3.45</td>
<td>0.06 ± 0.01</td>
<td>2.7 ± 0.1</td>
<td>11.1 ± 0.1</td>
<td>2.14 ± 0.02</td>
<td>0.20 ± 0.00</td>
<td>4.06 ± 0.19</td>
<td>106,980 ± 7840</td>
<td></td>
</tr>
<tr>
<td>FS07-04 UIC2176BI</td>
<td>383.74 ± 2.99</td>
<td>0.08 ± 0.01</td>
<td>2.1 ± 0.1</td>
<td>9.4 ± 0.1</td>
<td>2.15 ± 0.01</td>
<td>0.20 ± 0.02</td>
<td>3.88 ± 0.16</td>
<td>98,950 ± 7400</td>
<td></td>
</tr>
<tr>
<td>FS07-04 UIC2176BR</td>
<td>424.56 ± 3.61</td>
<td>0.07 ± 0.01</td>
<td>2.1 ± 0.1</td>
<td>9.4 ± 0.1</td>
<td>2.15 ± 0.01</td>
<td>0.20 ± 0.02</td>
<td>3.79 ± 0.16</td>
<td>111,950 ± 8330</td>
<td></td>
</tr>
<tr>
<td>FS04-93 UIC1556BI</td>
<td>27.35 ± 0.11</td>
<td>0.07 ± 0.01</td>
<td>2.4 ± 0.1</td>
<td>10.1 ± 0.1</td>
<td>1.97 ± 0.02</td>
<td>0.36 ± 0.04</td>
<td>3.91 ± 0.16</td>
<td>6995 ± 520</td>
<td></td>
</tr>
<tr>
<td>FS04-92 UIC15570</td>
<td>45.66 ± 0.10</td>
<td>0.07 ± 0.01</td>
<td>2.4 ± 0.1</td>
<td>9.1 ± 0.1</td>
<td>1.76 ± 0.02</td>
<td>0.34 ± 0.03</td>
<td>2.98 ± 0.11</td>
<td>15,310 ± 1080</td>
<td></td>
</tr>
<tr>
<td>FS04-91 UIC15560</td>
<td>56.95 ± 0.12</td>
<td>0.07 ± 0.01</td>
<td>2.3 ± 0.1</td>
<td>9.1 ± 0.1</td>
<td>2.04 ± 0.02</td>
<td>0.30 ± 0.03</td>
<td>3.81 ± 0.16</td>
<td>14,940 ± 1115</td>
<td></td>
</tr>
<tr>
<td>FS04-27 UIC15670</td>
<td>51.26 ± 0.10</td>
<td>0.10 ± 0.01</td>
<td>2.6 ± 0.1</td>
<td>10.4 ± 0.1</td>
<td>2.05 ± 0.02</td>
<td>0.32 ± 0.03</td>
<td>4.35 ± 0.18</td>
<td>11,785 ± 880</td>
<td></td>
</tr>
<tr>
<td>FS04-26 UIC1569Gr</td>
<td>110.50 ± 0.93</td>
<td>0.10 ± 0.01</td>
<td>2.4 ± 0.1</td>
<td>9.4 ± 0.1</td>
<td>2.10 ± 0.02</td>
<td>0.28 ± 0.03</td>
<td>4.16 ± 0.17</td>
<td>26,550 ± 1770</td>
<td></td>
</tr>
<tr>
<td>FS04-26 UIC1569Ir</td>
<td>75.40 ± 0.16</td>
<td>0.05 ± 0.01</td>
<td>2.4 ± 0.1</td>
<td>9.4 ± 0.1</td>
<td>2.10 ± 0.02</td>
<td>0.28 ± 0.03</td>
<td>3.70 ± 0.16</td>
<td>20,350 ± 1540</td>
<td></td>
</tr>
<tr>
<td>FS04-26 UIC1569ot</td>
<td>84.01 ± 0.21</td>
<td>0.06 ± 0.01</td>
<td>2.4 ± 0.1</td>
<td>9.4 ± 0.1</td>
<td>2.10 ± 0.02</td>
<td>0.28 ± 0.03</td>
<td>3.80 ± 0.16</td>
<td>22,130 ± 1670</td>
<td></td>
</tr>
<tr>
<td>FS05-38 UIC16570</td>
<td>6.27 ± 0.02</td>
<td>0.07 ± 0.01</td>
<td>2.4 ± 0.1</td>
<td>10.7 ± 0.1</td>
<td>2.31 ± 0.02</td>
<td>0.32 ± 0.03</td>
<td>4.23 ± 0.20</td>
<td>1555 ± 110</td>
<td></td>
</tr>
<tr>
<td>FS05-37 UIC16560</td>
<td>45.28 ± 0.11</td>
<td>0.07 ± 0.01</td>
<td>2.3 ± 0.1</td>
<td>9.1 ± 0.1</td>
<td>1.91 ± 0.02</td>
<td>0.30 ± 0.03</td>
<td>3.68 ± 0.13</td>
<td>12,300 ± 870</td>
<td></td>
</tr>
<tr>
<td>FS05-35 UIC16580</td>
<td>515.63 ± 3.39</td>
<td>0.09 ± 0.01</td>
<td>2.3 ± 0.1</td>
<td>7.3 ± 0.1</td>
<td>2.25 ± 0.02</td>
<td>0.25 ± 0.02</td>
<td>3.88 ± 0.15</td>
<td>133,060 ± 10,000</td>
<td></td>
</tr>
</tbody>
</table>

a) Equivalent dose determined by the multiple aliquot regenerative dose method under green excitation (514 nm) (Jain et al., 2003).

b) Equivalent dose determined by the multiple aliquot regenerative dose method under infrared excitation (880 nm) (Jain et al., 2003).

c) Equivalent dose determined by the multiple aliquot additive dose method under infrared excitation (880 nm) (e.g. Forman and Pierson, 2002). Blue emissions are measured with 3-mm-thick Schott BG-39 and one 3-mm-thick Corning 7-59 glass filters that blocks >90% luminescence emitted below 390 nm and above 490 nm in front of the photomultiplier tube. Fine-grained (4–11 μm) polymineral fraction analyzed.

d) Measured alpha efficiency factor as defined by Aitken and Bowman (1975).

e) U and Th values calculated from alpha count rate, assuming secular equilibrium, K2O% determined by ICP-MS, Activation Laboratory Ltd., Ontario.

f) Contains a cosmic rate dose rate component from Prescott and Hutton (1994). A moisture content of 15 ± 5% was assumed.

g) All errors are at one sigma. Analyses performed by Luminescence Dating Research Laboratory, Dept. of Earth & Environmental Sciences, University of Illinois–Chicago.
Table 2
Optically stimulated luminescence (OSL) ages from Qinghai Lake area reported in Madsen et al. (2008).

<table>
<thead>
<tr>
<th>Locality</th>
<th>Field number</th>
<th>Laboratory number</th>
<th>OSL age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Shore Gravel Pit</td>
<td>FS06-05</td>
<td>UIC1829R(^a)</td>
<td>102540 ± 7835</td>
</tr>
<tr>
<td>South Shore Km 2117 Pit</td>
<td>FS06-46</td>
<td>UIC1827R(^a)</td>
<td>18640 ± 1500</td>
</tr>
<tr>
<td>South Shore Km 2117 Pit Ground Wedge</td>
<td>FS05-166</td>
<td>UIC1652Gr(^d)</td>
<td>22640 ± 1790</td>
</tr>
<tr>
<td>South Shore Km 2114.5 Pit</td>
<td>FS06-47</td>
<td>UIC1868RGr(^d)</td>
<td>38840 ± 2955</td>
</tr>
<tr>
<td>South Shore Km 2114.5 Pit</td>
<td>FS06-47</td>
<td>UIC1868RGr(^d)</td>
<td>33700 ± 4040</td>
</tr>
<tr>
<td>South Shore Km 2114.5 Pit</td>
<td>FS06-48</td>
<td>UIC1828Gr</td>
<td>93270 ± 7080</td>
</tr>
<tr>
<td>Jiangxigou Ground Wedge</td>
<td>FS05-127</td>
<td>UIC1651Gr</td>
<td>24970 ± 2580</td>
</tr>
<tr>
<td>Jiangxigou Ground Wedge</td>
<td>FS05-127</td>
<td>UIC1651Ir</td>
<td>17920 ± 9445</td>
</tr>
<tr>
<td>Jiangxigou Ice Wedge Cast</td>
<td>JXG10E W</td>
<td>UIC1573IrAc</td>
<td>94455 ± 3260</td>
</tr>
<tr>
<td>Jiangxigou Ice Wedge Cast</td>
<td>JXG10E W</td>
<td>UIC1573Ir</td>
<td>1215 ± 1125</td>
</tr>
<tr>
<td>Heimahe Road cut 1, 248 cmbs</td>
<td>FS05-36</td>
<td>UIC1659Ir</td>
<td>94455 ± 3260</td>
</tr>
<tr>
<td>Heimahe Road cut 1, 248 cmbs</td>
<td>FS05-36</td>
<td>UIC1659IrAc</td>
<td>94455 ± 3260</td>
</tr>
<tr>
<td>Heimahe Road cut 1, 248 cmbs</td>
<td>FS05-36</td>
<td>UIC1659Ir</td>
<td>38840 ± 2955</td>
</tr>
<tr>
<td>Heimahe Road cut 1, 290 cmbs</td>
<td>FS05-35</td>
<td>UIC1830Gr</td>
<td>45560 ± 2880</td>
</tr>
<tr>
<td>Heimahe Road cut 2</td>
<td>FS06-45</td>
<td>UIC1830Gr</td>
<td>24970 ± 2580</td>
</tr>
<tr>
<td>Heimahe Road cut 2</td>
<td>FS06-45</td>
<td>UIC1830Gr(^d)</td>
<td>25800 ± 1910</td>
</tr>
</tbody>
</table>

\(^a\) Equivalent dose determined by the multiple aliquot regenerative dose method under green excitation (514 nm) (Jain et al., 2003).

\(^b\) Equivalent dose determined by the multiple aliquot regenerative dose method under infrared excitation (880 nm) (Jain et al., 2003).

\(^c\) Equivalent dose determined by the multiple aliquot additive dose method under infrared excitation (880 nm) (e.g., Forman and Pierson, 2002). Blue emissions are measured with 3-μm-thick Schott BG-39 and one, 3-μm-thick Corning 7-59 glass filters that blocks >90% luminescence emitted below 390 nm and above 490 nm in front of the photomultiplier tube. Fine-grained (4–11 μm) polymineral fraction analyzed.

\(^d\) The coarse fraction 150–250 or 100–150 μm quartz fraction is analyzed.

\(^e\) All errors are at one sigma. Analyses performed by Luminescence Dating Research Laboratory, Dept. of Earth & Environmental Sciences, University of Illinois–Chicago.

estimate, and for sample UIC1829 we use IR ages for interpretive purposes.

A critical analysis for luminescence dating is the dose rate, which is an estimate of the sediment exposure to ionizing radiation during the burial period (Aitken and Bowman, 1975). Most ionizing radiation in sediment is from the decay of isotopes in the U and Th decay chains and 40K, which was determined by inductively coupled plasma-mass spectrometry. A small cosmic ray component is included in the estimated dose rate (Prescott and Hutton, 1994). The dose rate also compensated for moisture content estimates at each site.

3.3. Lake water balance modeling

We used Arcmap and a GTOPO90 digital elevation model with 1 km resolution to estimate surface areas of lakes that would fill the Qinghai Lake Basin to different depths above 3205 m. Present-day lake surface area was set at 4300 km², following the reported cluster of estimates around this value (Lister et al., 1991; Qin and Huang, 1998; Henderson et al., 2003; Yan and Jia, 2003; Li et al., 2007). Surface areas for different lake depths in the Qinghai Lake Basin are given in Table 3.

We used the following simple water balance model to derive estimates of evaporation and precipitation needed to reach equilibrium surface areas:

\[A_L = \frac{(Q + G + M)}{(E_L - P_L)} \]

where \(A_L \) is lake surface area (in m²), \(Q \) is surface inflow (in m³), \(G \) is ground water flow (in m³), \(M \) is inflow from glacial melt, \(E_L \) is evaporation from the lake (m), and \(P_L \) is precipitation on the lake (m). We assume \(G \) is constant = \(6.0 \times 10^8 \) m³/yr (Li et al., 2007), regardless of lake depth. For this exercise we assume that \(M \), glacial meltwater, is negligible; Yu and Kelts (2002) reported it to be ~1% of total surface inflow.

We want \(Q \), surface inflow, to be a function of \(P_L \), such that

\[Q = A_D * k * P_L \]

where \(A_D \) is the drainage area excluding the lake area (i.e., \(A_D = 29.660 - A_L \)), and \(k \) is a coefficient expressing the proportion of inflow per unit \(A_D \) compared to \(P_L \). To obtain an estimate for \(k \), we calculated the relationship between total surface inflow to the lake and precipitation on the lake using data from 1970–1990 (Walker, 1993). The correlation between total surface inflow and lake precipitation shows considerable scatter (Fig. 4), but the relationship appears linear and reasonably strong (\(r^2 = 0.55 \)). Comparing the amount of precipitation falling on the lake to the amount of surface inflow generated per unit area of the drainage basin gives a current value of \(k \approx 0.141 \), with a standard deviation of 0.048 and a range of 0.063–0.230.

We approach modeling in two ways. For a known elevation we define \(A_L \) and find combinations of values for \(E_L \), \(P_L \), and \(k \) that satisfy \(A_L \). This approach shows the sensitivity of evaporation, precipitation, and runoff generation on lake water balance (Fig. 5). We also examine how lake surface area changes by holding \(k \) constant (at 0.141) and varying evaporation and precipitation (Fig. 6). This approach provides a useful comparison of the water balance needed to support higher lakes compared to modern conditions. Using both approaches we can delimit a likely range of hydrologic conditions for paleolake levels.

Table 3
Estimated surface area and inflowing drainage basin area for different lake levels in the Qinghai Lake Basin.

<table>
<thead>
<tr>
<th>Lake level</th>
<th>Estimated surface area (km²)</th>
<th>Inflowing drainage basin (km²)</th>
<th>% of total watershed</th>
<th>% of modern lake area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3194</td>
<td>4300</td>
<td>23360</td>
<td>14.5</td>
<td>-</td>
</tr>
<tr>
<td>3206</td>
<td>5466</td>
<td>24194</td>
<td>18.4</td>
<td>127</td>
</tr>
<tr>
<td>3245</td>
<td>6821</td>
<td>23039</td>
<td>22.3</td>
<td>154</td>
</tr>
<tr>
<td>3260</td>
<td>9352</td>
<td>22708</td>
<td>23.4</td>
<td>162</td>
</tr>
<tr>
<td>3299 (overflow)</td>
<td>7655</td>
<td>22005</td>
<td>25.8</td>
<td>178</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Rhode, D., et al., Paleoenvironmental and archaeological investigations at Qinghai Lake, western China:..., Quaternary International (2009), doi:10.1016/j.quaint.2009.03.004
produced an unconformity truncating the bedding and removing all but the base of a well-developed soil. These forest beds, approximately 1.5 m thick, extend over underlying fine-grained flat-bedded lagoon deposits. These deposits consist of laminated fine to medium sands between units of clayey sand containing unbroken ostracodes. In places these lagoon deposits are locally deformed. A fine sandy gravel layer <10 cm thick, beneath the clayey sand lagoon deposits, grades to a deposit of horizontally bedded fine- to medium-sized waterlain gravels reaching a maximum of 1.3 m thick approximately 50 m southeast of the lagoon deposits. Beneath this horizontally-bedded gravel layer is coarse angular alluvium with a well-developed paleosol on its surface.

This sequence indicates a beach sequence with a back-barrier lagoon overtopped by transgressing beach gravels. From the lagoonal sands below the forest gravels, we obtained a finite OSL age estimate of \(\approx 102.5 \pm 7.8 \) ka (Madsen et al., 2008). Two new age estimates, from the same sample (UIC1829) but using different measurement protocols, yielded limiting ages of \(> 101 \) and \(> 113 \) ka (Table 1). A radiocarbon date of \(\approx 41^{14} \)C ka on clean whole ostracode shells from the underlying clayey sands is considered to be a limiting age of a deposit that is likely much older. These dates suggest that the 3240–3250 beach and shoreline complex is older than \(\approx 100 \) ka.

4.2. East shore beach and spit features

An extensive paleoshoreline and spit complex is located on the extreme eastern margin of the lake, on a bluff south of the Riyue Mountains and north of the Daotang River (36.495° N, 100.847° E; Fig. 2; cf. Madsen et al., 2008). This complex provided the highest Pleistocene shorelines we could securely identify in satellite imagery and in field examinations conducted over four seasons of fieldwork (Fig. 9). Two distinct wave-cut benches are located on a broad constructional terrace at altitudes of \(\approx 3250 \) and \(\approx 3260 \) m. No higher shorelines or wave-cut benches were observed on the well-exposed slopes to the immediate north, suggesting that higher lake levels may not have been attained. A prominent sand spit complex, presently used as a construction borrow pit, was formed at a maximum elevation of 3248 m. We obtained an OSL age of 73.7 \(\pm 6.7 \) ka (UIC2175, Table 1) for this spit feature, approximately the end of MIS Stage 5a.

4.3. South shore gravel pits

A series of exposures in gravel pits along the highway on the southern margin of Qinghai Lake provide evidence of former higher lake levels, subsequent alluviation, and development of periglacial features on the Erlangiang Terrace, the bajada fronting the Qinghai Nan Mountains (Fig. 2). This area was previously investigated by Wang and Shi (1992) and Porter et al. (2001). We have previously described some of these sections elsewhere (Madsen et al., 2008), but new dates and exposures are presented here.

One gravel pit at 3246 m altitude (36.601° N, 100.400° E, Km 2117 on the highway) contained several periglacial features exposed within coarse gravel alluvial fan deposits, below which lay a thick bed of lacustrine nearshore sand deposits (Fig. 10). The upper \(\approx 1–2 \) m of this section is blocky Holocene loess, deposited on top of \(\approx 1.7 \) m of poorly sorted cobbly alluvium with angular clasts up to 25 cm in diameter. This upper alluvium rests on the weathered, undulating and slightly westward-dipping surface of another lower alluvial deposit. This lower alluvial gravel unit, also \(\approx 1.7 \) m thick, consisting of poorly to moderately sorted angular cobbles to \(\approx 10 \) cm maximum dimension, ice/sand wedges extend down into it from the undulating surface between the upper and...
lower alluvial units. Fine-grained aeolian sand fill, taken from one ice/sand wedge cast, returned an OSL age of 22.6 ± 1.8 cal ka (Madsen et al., 2008). If this age estimate is correct, it indicates that the upper alluvium was deposited during a period of renewed alluviation beginning some time after ~22.6 ka (LGM) and before the inception of loess deposition.

Below the alluvial units is a 1.6 m thick layer of well-sorted lacustrine sands (Fig. 11), which in turn lie atop a largely unexposed unit of alluvial gravels. From their base they fine upwards toward the center of the unit, coarsening again toward the top. Fine sand laminae occur at the top and bottom of the sequence with ripple laminated fine sand to silt laminae dominant in the middle of the unit. The sand surface has small undulations containing few pebbles and lenses of coarser sand. Two OSL-dated samples from this lacustrine sand unit, one near the base (8 cm above the basal alluvium; UIC2176, Table 1) and another in the middle (80 cm above basal alluvium; UIC2177, Table 1), returned age estimates of 98.9 ± 7.4 and 90.9 ± 6.7 ka, respectively.

A second gravel pit 2.5 km to the east at 3239 m altitude (36.596° N, 100.426° E; Km 2114.5 on the highway) reveals additional nearshore sand deposits and possible calm-water lagoon sediments (Figs. 12, 13). Again, blocky surface Holocene loess ~1.4 m thick tops the section, beneath which is a ~3.7 m thick layer of angular to sub-angular poorly to moderately well-sorted alluvial gravel and cobbles with clasts to 25 cm and occasional fine sand lenses containing scattered small gravel (Fig. 12). A few involutions averaging ~40 cm thick and containing possible aeolian deposits occur in the middle of this unit. At least one soil is apparent in the upper portion of the unit. We obtained a sample of a horizontally bedded coarse sand lens (3.8 m below modern surface) near the base of this bajada alluvium, dated by OSL to ~38.8 ± 3.0 ka and ~53.7 ± 4.0 ka (Madsen et al., 2008). This date provides confirmation for luminescence ages of ~44.5 and ~45.5 ka on nearby loess lenses within alluvial bajada gravels and ~33.3 and ~16.9 ka on overlying soils reported by Porter et al. (2001), as well as a 14C date of ~43.2 ka on aeolian deposits near the southeastern shoreline (Yuan et al., 1990).

Beneath this alluvial gravel at 4.1–4.28 m depth is a bed of coarse well-sorted sand containing broken mollusc shell, possibly a beach (Fig. 13). Immediately below it is a 2-cm thick band of ripple laminated silty clay that may be lagoon deposits. Underlying these beds are sandy near-shore deposits (4.3–5.0 m depth below surface), consisting of ripple laminated sandy silt at base, coarsening upwards to fine sands. Ripple laminae disappear towards the

Fig. 6. Equilibrium lake levels in relation to precipitation and evaporation, holding surface inflow coefficient constant ($k = 0.141$). Gray lines represent evaporation values E_L from 500 mm on left to 1400 mm on right. Lake levels are horizontal lines.

Fig. 7. Paleoshorelines and gravel pit east of Haiyin Bay, 3240–3250 m elevation.
top. An OSL sample collected from 20 cm below the top of the unit gave an age estimate of $89.3 ± 7.1$ ka (Madsen et al., 2008).

Beneath this ripple laminated sand is a 15 cm thick bed of medium to coarse well sorted sand containing shell fragments (possibly another beach), and below that laminated silty sands at least 20 cm thick but of unknown final depth.

4.4. Jiangxigou

A small perennial stream flows northward out of the Qinghai Nan Shan near the village of Jiangxigou, forming a prominent canyon in the bajada south of Qinghai Lake (Fig. 2). This canyon is notable because it has been subject to several earlier investigations of higher shoreline features (Porter et al., 1991; Wang and Shi, 1992; Nakao et al., 1995a). We conducted archaeological investigations at Upper Paleolithic and Epipaleolithic/Neolithic occupations in the canyon (Madsen et al., 2006; Rhode et al., 2007), and made observations pertinent to paleoenvironmental history as well.

We could find no evidence here of possible shorelines reported to be above 3260 m altitude. A supposed wave-cut platform at ~3330 m elevation is rather the head of a bajada fronting the Qinghai Nan Shan (Porter et al., 2001). Horizontally bedded coarse sand and gravel at this elevation appear to be overland slopewash deposits derived from the head of the canyon here (Nakao et al., 1995a). We obtained two OSL samples of aeolian silty sand filling two separate ice-wedges formed in the alluvium at the highest point of the bajada (Fig. 14) dating to $45.6 ± 3.4$ ka and $98.4 ± 7.4$ ka, respectively (Madsen et al., 2008). An AMS radiocarbon date of 22.9 cal ka from intrusive organic material also provides a limiting age. Together these age estimates suggest the ice wedges formed before 40 ka, with the top of the fan deposited before 45 ka and possibly before 98 ka.

4.5. Heimahe #1 and #3 archaeological sites

The Heimahe #1 archaeological site (Madsen et al., 2006; Brantingham et al., 2007) is located on the west side of Heimahe Village, in a former borrow pit and present-day sheep corral north of the Heima River, at ~3210 m altitude (36.730°N, 99.771°E; Fig. 2). The exposure consists of 3.5 m of fine sandy silt loess fining upwards to blocky silt loess (Fig. 15). These aeolian deposits overlie fluvial gravels and small cobbles that extend to an unknown depth. Horizontal charcoal stains in the lower third of the exposure indicate brief stable surfaces, at least one of which contains a human occupation site including a hearth, dated by seven 14C dates that average 13.1 cal ka (Madsen et al., 2006). This archaeological occupation layer is located about 2.11 m below the modern surface. A paleosol occurs at 1.4 m below the surface, above the archaeological occupation. An OSL date from just above the paleosol (134 cm depth) returned a date of $11.8 ± 0.8$ ka (UIC1567, Table 1). This age is consistent with the radiocarbon chronology from the exposure; however, other samples dated by OSL above and below this sample are inconsistent with it or with the radiocarbon chronology (Madsen et al., 2006; Brantingham et al., 2007), so the age of this sample may also be uncertain. The loess is underlain by fluvial sand and gravel, dated by OSL to $26.5 ± 1.8$ ka (UIC1569, Table 1). Zhou et al. (2004) report on geochemical aspects of this section.
The Heimahe #3 archaeological site (Rhode et al., 2007) is a similar stack of fluvial sands and gravels topped by loess, located at ca. 3203 m elevation on the east side of the village on a cutbank of the Heima River (36.724°N, 99.780°E; Fig. 2). At the base of the observed cutbank, 325 cm below the modern surface, is a bed of well-sorted gravels with clasts 2–5 cm in long dimension, and coarse sand filling the interstices (Fig. 16). Above this gravel bed is a 50 cm-thick layer of medium to coarse sands with a few silt lenses inter-fingered. This coarse sand unit is overlain by ripple laminated fine sand fining upward to flat-bedded silty sand, topped by a distinct layer of fine to medium sand with reworked unidentified mollusc shell fragments. The gravel and sand layers likely represent a shoreline interface of stream and lake waters reworked by fluvial or lacustrine action, an incursion of Qinghai Lake to the elevation of this locality. Above this, at 195–230 cm depth, is a layer of sandy silt loess, alternating with flat bedded fine sands, probably aeolian in deposition. The remnant of an archaeological habitation lies within this bed, 195 cm below the modern surface, including a firepit containing poplar (Populus) charcoal and a small scatter of artifacts dating to ~8.4 cal ka (Rhode et al., 2007).

The sandy silt loess extends upward to the top of the observed profile. A small sand stringer located at a depth of ca. 170 cm might represent a brief fluvial or lacustrine incursion, but we are uncertain about its derivation. A probable mid-Holocene paleosol is visible at a depth of 115–130 cm below the modern surface. The upper 115 cm of the profile is the modern soil zone, including an organic-rich A horizon of ~20 cm depth, a bioturbated friable weakly prismatic B horizon to 70 cm depth, and a carbonate-rich silt loess beneath that.

4.6. Heimahe road cut

A series of cutbanks occur along the highway northwest of Heimahe Village toward Bird Island, at ~3205–3210 m (+11–16 m)
on the southwest shore of the lake (36.759° N, 99.771° E; Fig. 2). These reveal a sequence of Holocene and MIS 3 loess units with paleosols, deposited over gravels dating to MIS 5 (Fig. 17).

The uppermost unit consists of late Pleistocene to Holocene loess, ~2.0–2.2 m thick, containing two probable paleosols (at ~1.25–1.45 and ~1.90–2.20 m depth in one exposure). Three OSL age estimates were obtained from this upper loess. One, at the top of the prominent upper paleosol (127 cm depth; UIC1657, Table 1), dates to ~1.5 ± 0.1 ka, indicating that more than a meter of loess has been deposited in places at this site within the past 1500 years. The next sample underlies the upper paleosol but above the lower one (173 cm depth; UIC1656, Table 1), and dates to 12.3 ± 0.9 ka. A third sample, at the base of this upper loess (248 cm depth), dates to ~17.9 ± 1.3 ka (Madsen et al., 2008). This basal date is consistent with previously reported ages for the initiation of loess deposition (Porter et al., 2001).

This upper loess overlies a distinct unconformity at this locality as well, one on top of a lower sandy silt loess unit. This lower loess fills swales in the underlying gravel unit. The unconformity extends across the top of this lower loess to the level of the high points in the underlying gravel unit, marked by a stone line and a moderately well-developed paleosol remnant. Small ice wedges periodically extend from the unconformity surface into the lower loess, wedges which are filled by sediment from the upper loess above. Sand from this lower sandy loess is dated by OSL to ~25.0 ± 1.9 ka (Madsen et al., 2008).

Fig. 13. Close-up of strata C–F as shown in Fig. 12.

Fig. 14. Alluvial fan deposits at head of Jiangxioug canyon mouth, with two periglacial wedges exposed (A and B). Wedge A returned an OSL age on fine-grained silty sand fill of ~98.4 cal ka (UIC1651).
The basal unit at this locality consists of sandy gravels and cobbles, the deposit sometimes having a roughly horizontal surface and elsewhere modified to forming rises and swales spaced 2–5 m apart and 0.8–1.0 m deep. The exposure is limited and the gravels may represent either alluvial/fluvial deposits or, more likely, wave-deposited or reworked beach materials. The cobbles are rounded to sub-angular, mostly platy in shape, and moderately well-sorted. The maximum clast size is 5–10 cm diameter. The undersides of the clasts are coated with a stage 2 carbonate layer. They occur in jumbled clasts with a matrix of yellow silt and sand; some unfilled pockets in the jumble are also present, lacking sandy matrix. The gravels are slightly imbricated, dipping gently toward the lake (indicating a possible beach). Erosion into this gravel layer appears to have created the pattern of rises and swales observed in one section. Mantling this gravel layer is a thin band of fine-grained coarsely banded sands and silts, the particles coated with clay skins. On top of this sand and silt layer is an armoring layer of gravels and sands oriented parallel to the surface of the rises and swales. This armor layer appears to be reddened with weathering. The top of the rises is at the same level as the lower sandy loess unit described above; the reddened weathering at the tops of the rises merges with the soil observed on the surface of this lower loess. A sample was collected from a sand lens below the armor layer and above the possible beach gravel in an adjacent road cut, 2.90 m below the surface. It returned two disparate OSL dates depending on method, 94.5 ± 7.1 and 133 ± 10.0 ka (UIC1658Ir and UIC1658Bl, respectively, Table 1; cf. Madsen et al., 2008).

5. Summary of observations

a. Lacustrine geomorphic features and deposits were observed as high as 3260 m altitude (+66 m above modern lake level). Ages of these features as measured by OSL indicate they probably date to late MIS 5 (~75–110 ka). The highest dated feature, a large spit at 3248 m, is dated to ~74 ka. Well-sorted sand deposits interpreted to represent lacustrine and lagoon environments at ~3235–3247 m altitude (+40–53 m above modern lake level), were dated between ~93–105 ka. The highest observed shoreline, at 3260 m, remains undated.
b. We saw no evidence of suggested lake deposits and shorelines located above 3260 m. Several reported features thought to be paleoshorelines at higher elevations appear to be alluvial deposits (Nakao et al., 1995a; Porter et al., 2001).

c. No MIS 3 lake deposits were observed, though such evidence may have been removed or obscured by widespread regional erosion that occurred prior to or during the LGM, or hidden by subsequent deposition of post-LGM loess. Evidence from alluvial sequences as well as core data from the lake itself suggests relatively modest lake elevations during last ~40 ka, often beneath the level of the present lake (Yu, 2005).

d. Many alluvial deposits in the lower basin were laid down during MIS 3 (Porter et al., 2001; Owen et al., 2006). Many of these deposits also show evidence of extensive erosion and unconformities, often in association with periglacial features. This widespread erosion likely occurred just before and possibly during a cold and dry LGM.

e. Post-LGM loess began to be deposited by ~16–18 ka, confirming the chronology reported by Porter et al. (2001). It is earlier than that reported by Küster et al. (2006) for the Qilian Mountains north of Qinghai Lake Basin. We recognized two paleosols in this loess, one of pre-Younger Dryas age dating to before ~12.3 ka and a second that is probably middle Holocene in age. The younger paleosol may be related to a mid-Holocene soil on the lake’s south shore containing spruce (Picea) charcoal dating to ~4.6 ka (Kaiser et al., 2007). Kaiser et al. also identified an older paleosol whose age is constrained by a date of ~9.2 ka on spruce charcoal from the base of colluvium overlying the paleosol.

6. Discussion

The lake highstands above 3230 m imply a hydrologic balance dramatically different than the one that exists today in the Qinghai Lake Basin, a hydrologic balance that may not have existed for the
past 70,000 years. As noted in Table 3, a lake with a surface altitude of 3260 m would occupy a surface area of ~6952 km², about 1.6 times that of the modern. Maintenance of a lake at this level would require a significantly greater ratio of precipitation over evaporation, and/or greater runoff generated from precipitation, to reach equilibrium. What amount of precipitation and runoff would be needed to offset evaporation, sufficient to support a lake at 3260 m altitude? Water balance modeling of Qinghai Lake shows that precipitation, runoff, and evaporation all are critical to lake level changes (Qin, 1994, 1997; Nakao et al., 1995b; Qin and Huang, 1998; Yan et al., 2002; Li et al., 2007). The water balance model used here indicates that to maintain a lake at the 3260 m level would require annual average precipitation of ~550 mm (~1.4–1.6 times modern estimates) or a decrease in evaporation to ~650 mm (a reduction of 30–40% below modern), or some similar combination assuming that runoff generation was close to modern values (Fig. 6). This is consistent with previous water balance modeling at Qinghai Lake (Qin, 1994, 1997; Qin and Huang, 1998; Jia et al., 2000; cf. Colman et al., 2007).

If the high lakes do prove to be MIS 5 and not later, several obvious questions are raised. What factors caused the high lakes? And, what conditions have changed so that high lakes no longer occur? Although we cannot provide answers to these questions, we can speculate on a range of possible causes.

First, the East Asian monsoon may have been significantly stronger during MIS 5, bringing more precipitation to the northeast Qinghai–Tibet Plateau than during the later MIS 3 and Holocene monsoon peaks (cf. Porter et al., 1992; Shi et al., 1999; Yang et al., 2004; Yuan et al., 2004; Wang et al., 2005). A strong East Asian Monsoon, developed during intervals of high summer insolation at ~75–85 (MIS 5a) and ~105 ka (MIS 5c), is recorded in speleothem records (Wang et al., 2001; Yuan et al., 2004; Li et al., 2005; Johnson et al., 2006; Kelly et al., 2006), particularly at ~107 ka and between ~86–80 ka, and in the Chinese loess record (An et al., 1991; Chen et al., 1999; Porter, 2001; Lu et al., 2004, 2006, 2007; Guan et al., 2007). The central Chinese loess record suggests that the winter westerlies system was weaker during MIS 5, so that the East Asian summer monsoon frontal position pushed further northward (Chen et al., 1990; Ding et al., 1995). The East Asian summer monsoon does not appear to have been exceptionally strong during MIS 3, so a lack of significant Qinghai Lake highstands during this period is to be expected (Colman et al., 2007). Possibly the East Asian monsoon was weaker during MIS 3 and after the LGM as a result of lower sea level, exposing the Sunda Shelf (An et al., 1991; Tamburini et al., 2003). The East Asian summer monsoon appears to have reached a peak of strength in northwest China during the early Holocene summer insolation peak (An et al., 2000; He et al., 2004), but that peak may have been less strong than during MIS 5, again possibly because sea level had not risen fully by the early Holocene, whereas the ocean level was high during MIS 5.

A second possible cause of the difference between the period of large lakes and the subsequent modest-lake period may have to do with the effects of evaporation from the lake and its basin. Evaporation obviously has a strong effect on water balance and consequently lake level, but it is a complex function of solar radiation intensity, cloudiness, wind speed, humidity, air temperature, water surface temperature, albedo, and ice cover. Modeling conducted by Qin and Huang (1998) shows that proportional changes in precipitation have the greatest effect on lake level, changes in cloudiness affecting evaporation have a smaller effect, and changes in air temperature has a smaller effect still. Qin and Huang’s results indicate that a one-degree change in mean annual temperature alone would yield a ~8.5% shift in runoff, a ~8% change in evaporation, and consequently a ~80–90 mm change in lake level per year.

Porter et al. (1992) provide global circulation model estimates suggesting that MIS 5 (126 ka) summer precipitation may have been ~3 mm/day greater, summer temperature ~2.5 °C greater, and winter temperature ~2.5 °C less than today. Feng et al. (1998) give similar estimates for the western Chinese Loess Plateau. If these values are reasonable, and following the estimates by Qin and Huang, then during MIS 5 the temperature increase would have raised summer evaporation by ~25%, but summer precipitation would have roughly doubled, more than offsetting the evaporation change.

By way of contrast, the modeled values for the strong early Holocene monsoon peak (An et al., 2000; He et al., 2004) is a ~2.5 mm/day increase in summer precipitation and ~1 °C increase in summer temperature, compared with today. These values suggest that precipitation may have increased ~250 mm more than today, while evaporation may have been only about 8% more than today. These values are not much less than the modeled MIS 5 conditions, and under such circumstances a large early Holocene lake level rise might be expected. But, as discussed, we and others (Lister et al., 1991; Yu, 2005) see no evidence for it in the Qinghai Lake record.

A third possible cause of the difference could be that the proportion of runoff generated from precipitation might have been greater. If the proportion of inflow into Qinghai Lake relative to precipitation at the lake can be used as a rough gauge, then the amount of inflow presently generated per unit area of the Qinghai Lake Basin (less the area of the lake) is ~0.141 times the amount of precipitation falling on a unit area of Qinghai Lake itself. If this proportion were to increase, to 0.2 or 0.3, the amount of additional inflow would be dramatically higher (Fig. 5). There is no reason to suppose, however, that basin runoff conditions during late MIS 5 were especially different than during MIS 3 or today. We might expect runoff generation to be greatest during periods when much of the basin was largely unvegetated, sealed in permafrost and undergoing heavy erosion, as during the LGM. Yet because precipitation was also apparently quite diminished during the LGM when these conditions applied, the lake level was also correspondingly very low. Modern human land use practices may also increase runoff, a factor which would not have existed during MIS 5, MIS 3, or the LGM. At present we do not know what surface conditions might have prevailed during MIS 5 that would increase the proportion of runoff generated. Given the sensitivity of lake area to small changes in runoff generation, this possible factor cannot be dismissed.

Fourth, precipitation brought to the region by prevailing westerlies may have been a stronger contributing factor than at present. Lakes in extreme western China often are influenced more strongly by westerly-derived precipitation than by summer monsoonal precipitation (Yang et al., 2004, 2006). Chen et al. (2008) suggest that westerly moisture flow affects arid central Asia more so than the East Asian monsoon, and that the two sources of precipitation are out of phase temporally. Could a stronger westerly dominated precipitation regime during MIS 5 have raised Qinghai Lake to higher levels? This possibility seems doubtful. While Qinghai Lake is at the crossroads of both the Atlantic westerlies and the Asian monsoons, the moist East Asian summer monsoon system tends to dominate in interglacial periods (such as MIS 5) while the drier westerlies dominate in glacial periods (Vandenberghe et al., 2006), and the Qinghai record fits more with the East Asian monsoon model than the westerly model. Winter westerlies at Xining, east of Qinghai Lake, appear to have been weaker during MIS 5 than during the Holocene, but stronger (Lu et al., 2006; Vandenberghe et al., 2006), which supports the idea that East Asian monsoons fed the high levels of Qinghai Lake. Large lakes were supported in the Tengger Desert in arid Central Asia during MIS 3.
(Zhang et al., 2004a), presumably as a result of enhanced westerly-derived precipitation, but large lakes do not appear to have been supported in the Qinghai Lake Basin. However, strengthened westerlies during MIS 3 may help explain why monsoons were not a strong force for the generation of large lakes in the Qinghai Lake Basin (Fang et al., 1999; Colman et al., 2007).

A fifth scenario concerns watershed modification and drainage capture. This region is tectonically very active, and stream capture is an important component of landscape evolution (Li et al., 1997, 2000; Li and Fang, 1999; Lehmkuhl and Haselein, 2000; Fang et al., 2005; Harkins et al., 2007). Qinghai Lake itself owes its present closed-basin status to tectonic uplift of the divide between it and the headwaters of the Yellow River (Pan, 1994; Li et al., 1996). The period around 100–150 ka BP appears to have been especially active on a landscape modifying scale (Li et al., 2000; Zhang et al., 2004b; Su et al., 2005). If the size of the watershed that fed Qinghai Lake was reduced after ~70 ka by tectonically driven stream capture, this landscape process could explain the lack of high lake stands after that time without invoking a post-MIS 5 reduction in the strength of the East Asian monsoon.

We turn now to an issue that initiated our investigations, the archaeological record of human occupation of the Qinghai Lake Basin during the late Pleistocene. As we have noted, well-dated evidence of human occupation of this region extends back to ~15 ka but no earlier. Where might we expect to find earlier records of human habitation, if such records exist?

Our observations suggest that such records, if they predate the age of post-LGM loess deposition, are not likely to have been preserved and will be exceedingly difficult to find. Most of the gently sloping lower lake basin, where human occupation is most likely, is now covered in post-LGM loess and therefore obscured. A cold and dry LGM environment would have been extremely unfavorable for human habitation of the Qinghai Lake Basin. Widespread regional erosion in the basin prior to the LGM would have hindered preservation of earlier human occupation on the piedmonts and slopes. Earlier loess deposits such as those found at the Heimahe road cut (that could possibly contain evidence of pre-LGM human occupation) appear to be quite rare. The extensive alluviation during MIS 3 may have buried archaeological sites toward the toes of alluvial fans near the lake margin (cf. Owen et al., 2006). However, during MIS 3 the lake may have been significantly lower, and those buried sites may now be underwater and 4–6 km offshore (Yu, 2005). In sum, our present understanding of landscape evolution in the Qinghai Lake Basin suggests that if people lived in the region during the pre-LGM period, the archaeological record of their occupation will be difficult to detect, apart from a few isolated artifacts.

7. Conclusions

Based on observations accumulated over the past several field seasons, we have suggested a revised late Pleistocene Qinghai Lake shoreline history (Madsen et al., 2008). We observed no significant late Pleistocene highstand features higher than ~3260 m. Shoreline features and deposits between ~3220–3260 m altitude appear to date to late MIS 5, and probably include multiple highstands. A transgressive lake at 3240 m that may have eventually reached at least as high as ~3247 m is dated to ~110–90 ka (late MIS 5c). Another highstand is recorded in the large spit complex at 3248 m, dating to ~75 ka (latest MIS 5a).

We found no evidence of high shorelines above ~3230 m that post-date ~70 ka. Evidence suggesting that Qinghai Lake stood at relatively low levels after 70 ka include alluvium dating to ~45–18 ka that is unmarked by shoreline development, core data suggesting low lake elevations after ~35 ka and possibly after ~70 ka (Yu, 2005), and the absence of lake deposits in low-elevation exposures dating ~95–25 ka (e.g., the Heimahe road cut). These observations suggest that lake level rises during MIS 3, late glacial termination, and the Holocene climatic optimum were modest compared to earlier lake highstands.

The Qinghai Lake shoreline record requires much additional age control and refinement, but it has strong potential to contribute to our understanding of the timing, strength, and distribution of late MIS 5 monsoon systems, of the relation of monsoons to continental westerly climatic regimes (Vandenberge et al., 2006), of the role of the Qinghai–Tibet Plateau as an amplifier of regional climatic systems (An et al., 2001; Liu and Yin, 2002; Liu et al., 2003; Harris, 2006), of late Pleistocene tectonic controls and the role of stream capture in landscape development in the northeastern Plateau, and of early human occupation of the Tibetan high country.

Acknowledgments

Support for this research came from the US National Science Foundation (INT-0214870), the Desert Research Institute, the University of California Los Angeles, the University of Arizona, the Mercyhurst Archaeological Institute, the University of Texas, the Santa Fe Institute, the Wenner-Gren Foundation, USA, and by the Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, PRC.

References

Please cite this article in press as: Rhode, D., et al., Paleoenvironmental and archaeological investigations at Qinghai Lake, western China:..., Quaternary International (2009), doi:10.1016/j.quaint.2009.03.004

Herschuh, U., 2006. Late Holocene evolution at the margins of the Asian monsoon during the last 50 ka. Quaternary Science Reviews 25, 163–178.

Herschuh, U., Kürschner, H., Mischke, S., 2006. Temperature variability and vertical vegetation shifts during the last ~50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quaternary Research 66, 133–146.

Jain, M., Botter-Jensen, L., Singhvi, A.K., 2003. Dose evaluation using multiple-

Nakao, K., Urakami, K., Momoki, Y., 1995b. Palaeohydrological evaluations for Qinghai Lake, Qinghai Province, China, on the climatic changes since the late Quaternary. Journal of the Faculty of Science, Hokkaido University, Series VII (Geophysics) 9, 525–539.

Quaternary Research 38, 157–169.

Quaternary International (2009), doi:10.1016/j.quaint.2009.03.004

Rhode, D., et al., Paleoenvironmental and archaeological investigations at Qinghai Lake, western China:...

